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ABSTRACT

In this project, computational tools were developed that help in designing and
analyzing multi-functional composite structures that have sensing and actuation
capabilities. Magnetic actuation of composite structures using built-in or embedded
electromagnetic devices was studied and a method for detecting load and damage in
composite structures by determining change in resistivity/conductivity was studied. An
algorithm for solving inverse problem to determine average resistivity values in
composite structures was demonstrated. The method can use data from an arbitrarily
large number of electrodes to compute average values of resistivity or conductivity for
the structure. Finite element models for the structure are used to solve the forward
problem, making this method very general and applicable to arbitrary shaped
structures. Ideally, the electrodes should be embedded in the structures during the
manufacturing process itself so that it can be used for quality control, detection of
defects as well as subsequent health monitoring.

The idea of using magnetic forces to actuate structural mechanisms was studied.
The main application of interest is micro air vehicle wings that are shell like structures.
Topology optimization method was studied as a potential method for designing
structures that have specified modes of deformation. The structure is then actuated
using magnetic actuation means built into or around the structures. Several actuators
were studied including solenoid actuators and coil actuators. After systematic
comparison of several designs, it was concluded that a coil actuator built into composite
structures is an ideal means for actuation of composite structures. A conceptual design
of a flapping wing vehicle was developed that is designed to actuate by built in
actuation capability of the body, wing and support structures. No external mechanisms,
motors or linkages are needed.

Computational tools were developed to design and analyze structures actuated by
magnetic forces. Magnetostatic analysis capability was implemented into a pre-existing
software (named IBFEM) developed at the University of Florida that can perform finite
element analysis without the need for generating mesh. Solid and surface geometry
modeled on commercial CAD software can be imported into this software and analysis
can be performed without approximating the geometry using a conforming mesh. The
structured mesh approach has been demonstrated to work for magnetostatic analysis
and validated using several examples with known solutions. The approach has been
demonstrated for both 2D and 3D magnetostatic models. Structured mesh is easy to
generate and the elements are regular and not distorted as in traditional finite element
mesh. Magnetic forces were computed by integrating the magnetic force density. These



forces are then used in a subsequent structural analysis to determine the deflection of
the structure. Shell elements based on uniform B-spline shape function were
implemented into IBFEM. One of the key advantages of using these elements is that a
structured mesh, which is easy generate automatically, can be used for the analysis.
Both quadratic and cubic B-spline shape functions were tested and it was found that
cubic elements provided very good results with fewer elements than quadratic
elements. Computational cost is higher for these elements compared to traditional shell
elements but often fewer elements are needed to get accurate results with cubic
elements. The time taken to create the model is significantly lower because structured
mesh generation is easily automated.



|.  INTRODUCTION

Composite materials have become the structural material of choice in many
aerospace, automotive and other applications where low weight, high strength and
rigidity are required. For applications such as in micro and unmanned air vehicles, in
addition to the above requirement, it is necessary to pack more and more functionality
into less and less space. This provides the motivation to make the structure of the air
vehicles multifunctional, allowing it to perform important tasks including actuation,
sensing, energy storage and energy harvesting in addition to providing structural
support and rigidity.

Multifunctional composites can significantly increase the duration of flight and the
payload of unmanned air vehicles (UAVs), especially micro-air vehicles (MAVs). Most
of the research related to multifunctional materials, in the past, has been in the area of
specialized materials such as piezoelectric and magnetostrictive materials that have
been used to design and build both actuators and sensors. These specialized materials
are typically not good structural materials and therefore are only used as attachments
on a structure to achieve sensing capability or to induce/damp vibrations etc. Effect of
large currents through metallic plates and shells have been studied in the past to
explore potential applications such as providing better impact resistance to armor
plates. Conductors carrying large currents through a magnetic field experience a
damping force that could potentially provide improved impact resistance. However,
metals lose strength at higher temperatures. Therefore the amount of current that can be
applied is limited by Joule heating of the plates. For composite materials also heating is
a problem that limits the current that it can carry so that electromagnetic damping may
not provide significant impact resistance. However, heat generated by currents can be
used beneficially to provide better curing of composites as well as for self healing after
an impact especially for composites that have thermoplastic polymer matrix.
Experimental evidence suggests that electric currents passing through composite
structures improve their impact resistance [1-2].

In this project, methods for designing and fabricating multifunctional structures
were studied. In particular, the focus was on designing sensors and actuators that can
be of great value to applications such as micro air vehicles. Feasibility of sensing
applied loads and damage on composites was studied. The idea of using embedded
circuits and magnetic forces for actuation of structures was also studied. Analysis tools
and design methods were developed for designing structural actuators that are
structural mechanisms actuated using magnetic forces generated by embedded circuits
and magnets. The main activities are summarized below.



1. Sensors

The conductivity / resistivity of composite plates were studied with the goal of
measuring changes in these properties as a means of detecting applied loads and for
sensing damages within the structures. For composite plates and shells, the most
common types of damage are due to delamination which occurs between layers and
tiber breakages. Both these types of damage may not be visually detectable from
external appearance. An inverse problem solving algorithm was developed for
determining the overall resistivity of a composite structure using voltages measured at
external electrodes. This provides a means of detecting damage by comparison with
resistivity values of undamaged material. The measurement accuracy was sufficient to
detect damage due to delamination and fiber breakage. Strains also cause small changes
in resistivity. The inverse method was found to be not accurate enough to determine the
magnitude or location of the applied load. The main problem is that the resistivity
changes due to applied loads are very small and yet highly nonlinear and lacking
repeatability.

2. Actuators

Magnetic fields can be created by currents flowing through fiber networks or
embedded conductors within composites. These magnetic fields can be used to actuate
or deform the structure which in turn functions as a mechanism. This method can
provide means to create very compact devices that have the capability to deform or
serve as actuators. The potential applications include morphing (or shape change) of air
vehicles and air vehicles that fly by flapping their wings. A key challenge in designing
such structures is the lack of suitable design and analysis tools. Many commercial
programs provide electrostatic, magnetostatic and electrodynamic analysis capability.
However, the ability to perform coupled magneto-elastostatic analysis is needed for this
application. Furthermore, the geometry of flapping wing type structures are complex
requiring shell like analysis for the composite wings while using solid structures to
model the magnetic actuators. Creating models for such systems is difficult in
conventional finite element analysis software. A method that does not require
conforming mesh was developed for coupled magneto-elastostatic analysis of multi-
material systems by extending Implicit Boundary Finite Element Method (IBFEM). This
method of analysis was developed at the University of Florida and has been used for
linear elastic and heat transfer analysis is the past. The method was extended to enable
magneto-elastostatic analysis as part of this research and applied to study several
actuator designs for flapping wing design.



3. Coupled Magneto-elastostatics using IBFEM

Implicit boundary finite element method (IBFEM) avoids the need for generating
conforming mesh by using structured mesh for the analysis. A structured mesh (also
referred to here as a grid) is a non-conforming mesh that is made up of regular shaped
elements (rectangles for 2D or cuboids for 3D) and is easier to generate than traditional
finite element mesh. The geometry of the analysis domain is represented using
equations that are independent of the grid. Boundary conditions are applied using
solution structures that are constructed using approximate step functions of the
boundary such that these boundary conditions are guaranteed to be enforced. A variety
of interpolation functions and approximations such as B-splines can be used with this
approach. IBFEM was extended to perform magnetostatic analysis and to compute
forces due to magnetic field. Using these forces in a subsequent elastostatic analysis, it is
possible to simulate the deformation produced by the structure.

4. Analysis of shell-like structures using IBFEM

Shell-like structures are modeled in traditional finite element method using shell
elements. The geometry for such structures is modeled using surfaces that represent the
mid-plane. In order to avoid mesh generation on a surface, the Implicit Boundary Finite
Element Method (IBFEM) was extended for the analysis of shell-like structures. Three
dimensional elements that use uniform B-spline approximation schemes are used to
represent the displacement field. The surfaces representing the shell passes through
these elements and the equations of these surfaces are used to represent the geometry
exactly. B-spline approximations can provide higher order solutions that have tangent
and curvature continuity. Numerical examples are presented to demonstrate the
performance of shell elements using IBFEM and B-spline approximation. Models of
flapping wings were created and analyzed to determine deflections due to magnetic
forces produced by the actuators that were designed. Mode shapes of vibration or
oscillation of several wings designs were also studied using this analysis tool.

5. Design of structural actuators

Several magnetic actuator designs were studied as potential actuation mechanism
within structural actuators. Three traditional designs were studied first: Solenoid
actuator, clapper actuator and coil actuators. Potential for using these basic designs to
actuate a flapping wing mechanism was studied. The coil actuator was found to be the
most promising approach. Structural designs suitable for the flapping wing mechanism
were explored. Topology optimization technique appears to be a promising tool to
design such actuation mechanism. The basic methodology for 2D structural mechanism
design using topology optimization using IBFEM was demonstrated. Further research is
needed to extend these ideas to design shell-like composite structures.
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. COMPOSITE STRUCTURAL SENSORS

1. Overview

A method to estimate the resistivity of composite structures using an inverse
problem solving algorithm was developed that uses voltage distribution on the
structure as data. Electrodes attached to the surface of the structure are used to obtain
voltage data in response to current injection through a pair of these electrodes. The
forward problem involves using the finite element method to predict the voltages at the
electrodes using known values of resistivity. The inverse problem involves solving for
the resistivity values using the experimentally measured voltage data. If the material
does not have uniform properties, the computed resistivity values are average values.
Damage or defect in a composite structure can significantly alter the average resistivity
of the structure. To explore the possibility of using this approach to detect defects in
manufacturing or damage due to loading, the effect of artificially induced
damage/defect on the overall resistivity of the structure was studied.

2. Sensing capabilities of carbon fiber composite structure

Carbon fiber based composites are of interest in multifunctional and smart
structure design because they are conductive and there is a correlation between changes
in electrical properties and applied strains. The resistance changes under a variety of
load types including tension/compression [3]-[8], bending [9], and impact [10]-[16] have
been studied in the past. The motivation for these studies has been to explore the
possibility of using carbon fiber composite as strain or stress sensor by measuring its
change in resistance due to applied strain. The electrical properties are also affected by
any damage such as delamination and cracks [18]-[27] that may occur in the structure.
This provides a mechanism to sense damage by measuring the change in resistance and
to identify delamination or crack or even to quantify the energy of the impact that
caused the damage. Both AC and DC measurements have been used as means of non-
destructive testing, damage detection and monitoring [18]-[19]. Due to its excellent
mechanical properties, carbon fiber composites are widely used as a structural material.
If they can also serve as a sensor that can detect applied loads or internal damage
without the need for external sensors, then they can serve as a multifunctional or smart
structural material.

The resistivity of carbon fiber composite material is orthotropic and therefore it is
characterized by the three principal values. In order to measure the resistivity of carbon
tiber composite, several specimen shapes and electrode placements schemes have been
studied [3], [5], [17]. The simplest scheme would be to apply a uniform current density



on a composite specimen between electrodes on parallel faces and measure the voltage
at these electrodes. This is the two-probe approach where, current injection and voltage
measurements are made at the same pair of electrodes. Using resistance measured
between two electrodes, the resistivity can be calculated when the specimen has simple
geometry of known dimensions [17]-[21]. Fig. 1 illustrates both the two-probe method
and the four-probe method. The two-probe method is highly sensitive to the contact
resistance at the current injection electrodes because the measured voltage difference
includes the voltage drop across the electrode and its interfaces. In the four-probe
method, one pair of probes is used for the current injection at a pair of electrodes while
the other pair is used for voltage measurement on a different set of electrodes. Again,
the resistance is determined using Ohm’s law and the resistivity can be calculated if the
applied current is uniform and the specimen dimensions are known. The four-probe
method provides results that are more reliable because it is not sensitive to contact
resistance. These approaches for determining the resistivity are suited for simple block
like specimen subjected to uniform current where the electrodes cover an entire side of
the specimen. It is beneficial to be able to measure resistivity for arbitrary shaped
structures that may be subjected to loads. Applied loads on the specimen can cause
contact degradation between electrodes and the carbon fiber composite specimen [10]-
[14]. It is preferred that the electrodes can be placed anywhere on the specimen so that
they can be placed at locations least affected by the loads.
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Fig. 1 Two conventional methods to measure a resistivity: (a) Two-probe method (b)

Four-probe method.

An approach for estimating the average resistivity of arbitrarily shaped carbon
tiber composite structures using inverse method was developed as part of this research.
An inverse method involves computing the material properties, in this case resistivity,
by searching for values of the properties such that a model using these values can
correctly predict a set of experimentally measured responses. Inverse methods have
been used in the past to detect damage in composites. Todoroki et al [20]-[23] used an
array of electrodes placed along the top surface of a plate-like specimen to detect
damaged areas using inverse method and response surface models. The electric
potential computed tomography (CT) approach [24]-[27] also uses inverse method for



defect identification (delamination or surface crack) using passively observed electric
potential values on a thin piezoelectric film attached on the surface of the structure.

In this project, an inverse problem solving method was used to compute the
overall or average resistivity values of arbitrarily shaped composite structures using
voltages measured on surface electrodes as data. If the resistivity of the undamaged and
defect free material is known then the average resistivity computed using this method
for a given structure can be compared with the known values to determine if the
structure is free of defects or damages. The forward problem is the finite element model
of the composite structure that can predict voltages on the set of electrodes distributed
over the specimen if the resistivity is known. The inverse problem involves solving for
the resistivity values using experimentally measured voltages at the electrode. The
primary advantage of using a finite element model, as opposed to an analytical model,
in the forward problem is that the specimen can then be of arbitrary shape giving us the
flexibility to determine average material properties of real structural components that
are in use in automotive or aerospace structures.

3. Experimental Procedures and Analysis

In this study, both unidirectional carbon fiber composite plates and woven fiber
composites were used with electrodes attached on the top and bottom surfaces. Voltage
differences between pairs of electrodes were measured using one set of probes while
current was injected at a different pair of electrodes using a different set of probes. Fig.
2 shows the schematic diagram of the experimental setup with a specimen that has
eight electrodes, with four electrodes on the top, and the other four electrodes at the
bottom. As shown in the figure, a current source and voltmeter are attached to a
multiplexer that can be used to measure the voltage between any two pair of electrodes
while current is injected between any other pair of electrodes. Therefore, for any pair of
electrodes between which current is applied we can measure voltage difference
between all the other combinations of electrodes available. Then by changing the
current injection electrode pair, even more data can be obtained that can be used in the
inverse method to obtain an average value of resistivity in the three principal directions.
This method will be robust even when the structure is under any loading because it is
not necessary to generate uniform current distribution between any electrode pairs and
electrodes could be located where it is relatively safe from damage due to any external
load.
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Fig. 2 A schematic diagram of the experimental setup

As mentioned earlier, the model used for the inverse problem is a finite element
model. A finite element mesh that represents the geometry of the specimen with
reasonable accuracy is needed. Using this FEA model, we solve the forward problem,
which involves finding the voltage distribution using the known value of applied
current and an estimate (or guess) of the resisitivity values in the three principal
directions. Accurate values of the resistivity are then calculated by minimizing the error
between the computed voltages at the electrodes and the measured voltages by varying
the resistivity values iteratively. The optimization process involves solving the forward
problem repeatedly until good estimates of the resistivity values are obtained. Gauss-
Newton algorithm was used for minimizing the least square error [28].

Fig. 3 FEA model of specimen with eight electrodes

Fig. 3 shows the FEA model used for the eight electrodes specimen. The size of
specimen modeled here is 54x52x1.5 mm?. The model has 3024 hexahedral elements so
that the average element size is 2x2x1.5 mm?. Electrodes 1 and 7 were used as the
current injection electrode pair, with electrode 7 as source and electrode 1 as drain or
reference point. The current injection electrodes were modeled as surfaces (or faces of
elements) that have a specified normal component of current density. The voltage at the
reference electrode (or associated nodes) was set to zero. For this analysis, the
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amplitude of injected current applied was 28.9mA and the resistivity was 0.01 mOm in
all the three principle directions. Fig. 4 shows the voltages computed by solving the
forward problem using FEA.

Fig. 4 The voltage distribution as the solution of a forward problem

4. Inverse problem

The inverse problem is an optimization problem where the objective is to
minimize the error between the outcome predicted by the forward problem (or the
model) and the experimentally measured outcome. For the problem of interest in this
project, the forward problem involves solving the governing equations of electrostatics
using the finite element method to obtain voltage distribution in a composite structure.
The governing equation and the natural boundary conditions are

V-([6]-V#)=0 in Q 2.1)
Jy=-J3-i=[6]-Vg-Hi onoQ (2.2)

where, ¢ is the electric potential or voltage, J, is the normal component of the

current density along the boundary 0Q and n is the outward unit normal vector at the
boundary. [6] is the conductivity matrix of the material which is a diagonal matrix

whose components are the inverse of resistivity values in the principal directions. If the
material is isotropic, conductivity can be treated as a scalar o.

The optimization problem for the inverse method is the minimization of the
square of the error. The objective can be stated as

2

Minimize F(p) = Zi:(¢m = (2.3)
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where, ¢, is the voltage at the m' electrode predicted by the model while ¢, is the
voltage measured at the same electrode experimentally and n; is the number of data

points or electrodes at which voltages are measured. The variables of the optimization
problem are the resistivity values in the three principal directions that are the
components of the vector p. The resistivity values are used as variables instead of the
conductivity values because the voltages have an inversely proportional relationship
with the conductivities that would make the objective function highly nonlinear.

The Gauss-Newton algorithm linearly approximates the error at each iteration and
then minimizes the resultant problem using the Newton’s method. Therefore, this
approach requires only the computation of the gradient of the error. The application of
this approach to compute resistivity by minimizing the error in the computed voltages
is summarized below. The gradient of the objective function defined in equation (2.3),
can be expressed as

oF W o,
n Zl( ) 3o op; (2.4)

Using Newton’s method, the optimality criterion, VF =0 can be solved iteratively
by updating the resistivity values at the k' iteration as

kil _ K k
P =P+ Ap;

(2.5)
Where the update vector Ap* is computed by solving
2 A2
oF (p") 28 F(p" ) A p k=0
apl j 6p|6pj (26)

The second derivative of the objective function or the Hessian matrix can be
computed as

0°F N (og, Ody 0% .
H, = =2 m.2fm = %m (4 g
! opiop Z—l( opi Opj Opiop; ( " m)

(2.7)

The Gauss-Newton approach involves approximating the error (or in this case
voltage) as linear at each iteration so that the second derivative of the voltage is set to
zero, approximating the Hessian matrix as

U_zz[aqﬁm,aﬂ

opi 0pj (2.8)
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Using this approximation, equation (2.6) is solved to compute the resistivity
update vector Ap. In order to implement this iterative strategy to compute the
resistivity values, it is necessary to compute the gradient of the voltage with respect to
the resistivity. This gradient is needed for computing both the gradient and the Hessian
of the objective function. It can be computed by taking the gradient of the governing
equations. The finite element method converts the governing equation (2.1), into a set of
linear simultaneous equations, often express in the form,

[KJi@}={1}
(2.9)
Where [K] is the global conductivity matrix, {®} is the voltage vector containing
the nodal values of the potential or voltage and the current vector {I} contains the

contribution from current applied at the boundaries. Taking the derivatives of both
sides of this equation with respect to the variables p,, we get,

k]! :_[6[K]J{®}

op; op;

(2.10)

The current sources are clearly not a function of the resistivity values and
therefore the current vector’s derivative is zero. The right hand side of equation (2.10)
can be computed element by element and assembled to create a global vector. Then the
gradient of all the nodal voltages with respect to the resistivity values can be obtained
by solving equation (2.10). Of course, we need the gradient only for the nodes that are
located at the electrodes where the voltages are measured.

5. Numerical validation

The inverse approach described in the previous section was implemented on a
finite element program for solving electrostatic problems. In order to first verify the
validity of the algorithms and the implementation, the model itself was used to create
data by computing the voltages at the electrodes using assumed values of resistivity.
Then using this data in the inverse approach, the resistivity was computed starting from
random values to verify if the known correct value can be computed. A plate whose
dimensions are 54x52x1.5mm’® was modeled for the validation. The total number of
elements in the FEA model was 3024 where each element is of size 2x2x0.5mm®. A
constant current of 28.9mA was applied at the electrodes. For generating the data used
for inverse algorithm validation, the material was modeled as isotropic with a
resistivity of 0.01 mQm in all three principal directions. Using the voltage data
computed using this model, the inverse problem was solved to estimate resistivity
values and in this case exact solution were obtained for the resistivity. Therefore,
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random noise from 0.1 to 1 per cent was added to the voltage data to simulate typical
experimental error in measured data. The inverse problem was solved repeatedly for
data with different noise levels and the effect of the added noise was evaluated to
determine the resultant error in the resistivity computed by the inverse approach.

Fig. 5 shows a plot of the error in the computed resistivity values versus the
percentage random noise or error introduced into the voltage data. For data with no
error, all three principal resistivity values are computed with zero error but as the noise
level increases the errors in the computed values increase. With 0.1% random noise
added to the voltage data, the errors in the resistivity values range from 0.03% to 0.17%.
In the case of 0.5% random noise, the errors are from 0.38% to 0.73% and for 1% noise,
they are from 0.85% to 5.39%. Clearly, the computed values of the resistivity are
sensitive to errors in the data. The resistivity in the thickness was found to be the most
sensitive to the noise.

Error (per cent)

0 0.2 0.4 0.6 0.8 1
Noise (per cent)

Fig.5 Error in computed resistivity due to noise in voltage data

If the material does not have uniform properties, then an average value is obtained
using the inverse approach. Therefore, if the material has a region with different
properties due to embedded inclusions or due to damage / delamination then the
computed average value would be significantly different than the undamaged uniform
material’s properties. This can serve as an indicator for detecting defects or monitoring
damage in composite structures. To simulate this, models with varying size regions
with different properties were modeled. Fig. 6 shows models with square regions that
represent damaged regions that have different properties than the surrounding
material.
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Fig. 6 Size and shape of the damaged region modeled in the forward problem

All the models are plates of dimensions 50x50x1 mm?, which are assumed to be
made of woven composites whose conductivity values are o,=0,=15 S/mm and
0,=155/mm. The damaged region is assumed to have very low conductivity values:
0,=0,=0,=1x10° S/mm. Using these models, voltage data at the electrodes where
generated to be used as data for testing using the inverse approach. Fig. 7 shows the
average values of conductivity computed by the inverse method. The largest change in
conductivity occurs in the through thickness direction in this case where we have
assumed that the damaged region is isotropic with very low conductivity.
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Fig. 7 Computed average conductivity versus damage size

6. Experimental Results

Several plate-like specimens made of both unidirectional and woven composites
were used to make experimental measurements of the voltages on electrodes located on
both sides of the plate. The voltage data measured from experimental specimen was
used to determine the resistivity values, first for undamaged composite plate like
specimen with uniform values of resistivity. Thereafter, specimen with artificial damage
or non-uniform properties was used to determine an average value of resistivity.
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Resistivity measurement for undamaged unidirectional composite specimen

Continuous carbon fiber unidirectional composite, with 35% resin content and
eleven layers, was used to prepare specimens of two different size, which are
52x47x1.5mm® for the first, and 54x52x1.5mm® for the second. Both specimen had eight
electrodes, each about 1x1 mm?; four electrodes on the top surface and the other four
electrodes on the bottom surface. The unidirectional composite specimens were made
by cutting it out of commercially available composite sheets. In order to make the
electrodes, the electrode area was first polished with sandpaper to remove the surface
layer. Thereafter, silver paint was applied to this area and after it was dried, a thin
copper strip was attached to this areas using silver epoxy to adhere to copper strip and
to provide good electrical contact. The measurement probes where attached to the
copper strips for measuring voltages and for injecting currents. The eight electrodes
were numbered as shown in Fig. 3 .

Table I: Measurement configurations

Current Pairs \oltage measurement pairs (Target, Reference)
(Source, Drain)
(3.1 (2.1) (4.1) (5.1) (6.1) (7.1) (81)
(41) (2.1) (3.1) (5.1) (6.1) (7.1) (81)
(7.1) (2.1) (3.1) (41) (5.1) (6.1) (81)
(8,1) (2,1) (3,1) (4,1 (5,1) (6,1) (7,1)

In table I, the electrode pairs at which current was injected are listed and for each
such pair voltage was measure at six different electrode pairs. Voltage difference is
measured by a Keithley 2002 multimeter using the four-probe method and DC constant
current magnitude of 7.235mA was injected at the current pairs.

Uncertainty of voltage measurement is about 0.0026% using Keithley 2002. In
order to calculate the measurement error, 20 consequent voltage data were taken on
each voltage measurement pair to calculate the average value and the standard
deviation. Numerical validation results suggest that if the error in voltage data is
0.0026%, the calculated resistivity values should have less 0.1% error. However, in
practice, the error can be higher due to inaccuracy in modeling the geometry of
specimen, electrodes and also numerical errors in solving the forward problem. The
calculated values of resistivity are an average value for the entire specimen, which is
assumed to have uniform properties in the model. Two different geometrically accurate
FEA models were created corresponding to the two specimens used in the experiments.
The FEA model for the first specimen has 10176 elements with the element size of
1x1x0.5mm?*. The second specimen has 11660 with the same element size.

Table II shows computed values of resistivity in each direction for the two
specimens. For both specimen, the electrodes where modeled as current injection areas
of 1xX1 mm?. In the experimental specimen, it is difficult to create accurately sized
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electrodes. To study the sensitivity of the results to error in modeling the electrode area,
the same voltage data was used with models that used 2x2mm? current injection regions
to model the electrodes. The computed values of resistivity did not change significant
indicating that it is not necessary to model the electrodes with great precision. The
resistivity values, in table II, show that the resistivity in the transverse and thickness
direction are several orders of magnitude larger that the resistivity in the fiber direction.

Table Il: Computed values of resistivity

Direction 52x47x1.5mm? specimen 54x52x1.5mm® specimen
Fiber direction 0.024 mOQm 0.020 mOm
Transverse direction 18.6 mQm 13.4 mQm
Thickness direction 67.5 mQm 60.0 mQm
Least square error: 5.25x10° 3.68x10°

Woven composite specimen with and without damage

Resistivity values were determined for woven composite specimen also using the
same procedure. To study the effect of damage, artificial damage was introduced by
embedding Teflon patches between the layers. We fabricated both the damaged and
undamaged specimen using four layers of woven carbon fiber prepregs. To create the
damaged specimen, Teflon patches were introduced between the first and second layers
as well as the third and fourth layers as shown in the Fig. 8 . The specimen size was
50x50x1 mm?® and the size of the Teflon patches were 10x10 mm? and they were
centrally located within the specimen. Eight electrodes attached at the corners of the
specimen were used to gather voltage data. The electrodes were created by inserting
copper strips between the first and second layers as well as between the third and
fourth layers of prepreg before curing. This method avoids the need for attaching
electrodes with silver epoxy and it provides better contact as well as robust connection
that are not easily damaged.

Fig. 8 Woven fiber composite prepregs with embedded Teflon patches
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To determine the resistivity, three undamaged specimen and three Teflon
embedded specimen were used. The results obtained are listed in Table III, which
shows values for resistivity for the six specimen and the average values. Clearly, there
is significant change in resistivity due to the Teflon embedding that can be detected
using the resistivity measurement technique described here. This approach therefore
has potential to be used for quality control, to detect manufacturing defects such as
voids and air gaps as well as delamination or damage that may occur during usage.

Table Il Resistivity values for woven fiber composite specimen

Specimen No. Specimen without teflon
1 o, =15.39[S/mm]

Specimen with Teflon
o} =9.4086[S/mm]

o, =17.25[S/mm]
o, =1.617[S/mm]

o, =11.88[S/mm]
oy =0.9708[S/mm]

2 o, =13.46[S/mm] ol =9.2415[S/mm]
o, =18.15[S/mm] o, =8.539[S/mm]

o, =1.18[S/mm] o} =0.7438[S/mm]

3 o, = 22.86[S/mm] o} =8.2043[S/mm]

o, = 22.32[S/mm] ol =8.9204[S/mm]

o, =1.02[S/mm] ol =0.8232[S/mm]

Average 0, =17.24[S/mm] o, =8.9515[S/mm]

o, =19.24[S/mm]
o, =1.272[S/mm]

oy =9.7798[S/mm]
o} =0.8459[S/mm]

7. Discussion

An algorithm for solving inverse problem to determine average resistivity values
in composite structures was demonstrated. The method can use data from an arbitrarily
large number of electrodes to compute average values of resistivity or conductivity for
the structure. Finite element models for the structure are used to solve the forward
problem, making this method very general and applicable to arbitrary shaped
structures. Ideally, the electrodes should be embedded in the structures during the
manufacturing process itself so that it can be used for quality control, detection of
defects as well as subsequent health monitoring. One of the advantages of measuring
resistivity is that damage can be detected even in structures that were not tested during
manufacturing. Damage can be detected for structures that are in use by attaching
electrodes on the surface, determining the average resistivity and comparing it to values
associated with undamaged material. The main source of error in this approach arises
from inaccuracy in the geometric models of the structure and the electrodes. Random
noise added to the voltage data used in numerical validation indicates that any error in
the voltage data can get amplified due to difficulties in numerical convergence.
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In principle, a similar inverse approach can also be used to determine applied
loads on the structure. Preliminary experimental studies indicate that this may be
difficult because the changes in the electrode voltage due to strains can be very small.
Even with amplification, the data is hard to use because of significant non-linearity in
the observed behavior. However, the approach we developed is promising for detecting
damages or defects because they cause significant changes in resistivity and is therefore
easier to detect. Further study is needed to explore ways of determining applied loads
and strains.
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. COMPOSITE ACTUATING STRUCTURES

1. Overview

Polymer matrix composites are widely used as a structural material in a variety of
aerospace applications including commercials jets, unmanned air vehicles as well as
micro air vehicles. In many of these applications weight is an important constraint and
available space is very limited. This provides an incentive to pack as much functionality
as possible into the structure itself by making it multifunctional. For air vehicle
applications, structures with actuation ability are particularly desirable for designing
active structures such as morphing wings/body panels or flapping wing like structures.
Methods of actuation studied in the past have mainly consisted of embedded peizo-
electric fibers and patches. In this project, electromagnetic means of actuation were
studied wherein embedded ferromagnetic materials are used for the actuation using
external or internally generated magnetic fields.

Composite structures made of epoxy matrix and carbon fiber reinforcement have
excellent structural properties including stiffness/rigidity and high strength. Therefore,
many aircraft structures are made of such composites, particularly in unmanned and
micro air vehicles. Due to the conductivity of carbon fibers, it is possible to conduct
currents through these composites. Magnetic field can be generated in composite
structures by current flowing though the reinforcing fibers/conducting wires as well as
due to embedded permanent magnets. The magnetic forces generated on the structure
can be large enough to cause deformation if ferromagnetic materials are embedded in
the structure and large currents are flowing through the structure. Unlike in traditional
electrical machinery, structures that are meant to actuate are designed to deform
significantly due to the magnetic forces. Therefore the structure cannot be treated as a
rigid body and its deformation needs to be computed using an analysis model that
couples the magnetic and structural models. To compute the resultant deformations,
strains, and stresses, a two stage analysis approach is adopted here. The magnetostatic
problem is solved first to compute the magnetic flux density and field distribution. This
result is then used to compute the body forces generated on the structure due to
magnetic forces. In the second stage a solid mechanics analysis is performed using these
magnetic forces to compute the mechanical deflections. In general if these deflections
are large, causing the current carriers and embedded soft and hard magnets to move
significantly relative to each other, then the movement would alter the magnetic field,
requiring an iterative solution. However, in this project, only linear elastic deformation
with a two stage analysis as described was considered. For the type of actuators that is
most appropriate for this application, linear models are sufficient as described in later
chapters. The structure is also modeled as linear elastic since the deformation of the
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mechanism is reversible. It would be beneficial in future work to incorporate large
deformation models to simulate the full range of motion of highly flexible structural
mechanisms.

2. Motivation for structural actuators

The primary application that serves as motivation for this work is the design of
micro air vehicles (MAV) and unmanned air vehicles (UAV). The goal was to develop
computational tools for design and analysis of magnetically actuated structural
mechanisms for these air vehicles so that structural components of the vehicle including
wings, fuselage and tail can be designed function as structural actuators. Therefore,
rather than have external mechanisms, linkages, motors or actuators to produce the
necessary motions, the structure is designed to deform in specified manner due to built-
in magnetic actuation capabilities. This would allow these structures to flex or change
shape for morphing applications as well as oscillate or vibrate to produce flapping
motion.

Fig. 9 shows the conceptual design of a simple flapping wing actuation
mechanism where the wings are attached to a flexible structural support that is actuated
by the electromagnets built-into this support. The key design challenges for this concept
include:

(i) Designing magnetic actuators that are strong enough to produce the
necessary deformation

(ii)  Designing the support structure and wing such that the desired motion is
produced when the actuating magnets are activated

(iii) Designing the dynamics of the wing so that at resonance the flapping
motion will produce the desired mode of vibration that can generate thrust
and lift.
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Fig. 9 Flapping wing conceptual design

The actuator can be better integrated with the structure if the deforming
component is built as part of the wing structure. A design based on this concept is

shown in Fig. 10 .

-

Fig. 10 Alternate design of actuator

The structure is designed to be compliant so that it can deform to produce the
desired actuation. The idea is illustrated using a simple wing design in Fig. 11 where
the magnetic forces are shown as acting along the edge of half of the wing assembly.
The force causes the wing structure to deform to produce the flapping motion. The
actual deformation mode will depend not only on the shape of the wing and the
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support but also on the reinforcements, fiber direction and number layers in the
composite shell.

Fig. 11 Deforming structural mechanism

In order to design the embedded actuators, it is necessary to have the ability to
compute the magnetic field produced by the actuator, compute forces on structures and
then compute the deformed shape of the structure due to these forces. To design the
structure itself, we would like to compute the shape of the support structure, the
orientation of the fibers of the composite, the possible location of holes or
reinforcements such that the structure would deform or oscillate in the desired mode. A
possible design tool for computing the geometry and reinforcement is topology
optimization. This idea was explored as part of this project and some of the results are
presented in the next section.

3. Designing the shape and topology of structural actuator

In order to design the shape of the structure that is appropriate for the desired
actuation, the geometry design problem is stated as a design optimization problem.
Firstly, a region within which the geometry must fit is defined as a feasible region. The
geometry is defined within this region as the level set or contour of a density function
(or the characteristic function). Contours of this function corresponding to a threshold
value are defined as the boundaries of the shape so that regions where the value of the
function is below the threshold are not part of the geometry. Hence, the boundary may
be defined using the following implicit equation

o(X,y) =y =0 (3.1)
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Fig. 12 Shape representation using shape density function

In traditional topology optimization methods, porosity or density of the material
is treated as constant within each element. In this work, the density was assumed to
vary continuously within the feasible region. Fig. 12 illustrates this shape representation
where the rectangle represents the feasible region, the arrows at the top represent a
uniformly distributed load and the structure is to be supported at the bottom. A mesh is
generated for the feasible region and the density function is defined within this feasible
region by piece-wise interpolation within elements of the mesh. Contours of the density
function are plotted in the figure. The contour of the density function corresponding to
the threshold value ¢, is the boundary of the solid and the regions with higher values
of density is the interior of the solid shown as the shaded region in the Fig. 12 . In this
example, there are multiple contours that correspond to the threshold value each
representing part of the boundary. Shape representation using a contour of the density
function enables the entire geometry to be treated as a variable. By changing the density
function it is possible to not only modify existing boundaries but also to create new
internal boundaries.

The density function ¢ =1, where the material is fully dense and ¢<¢, where there
is no material. The density function can also take on intermediate values but as
explained later the relation between density and material properties is selected such
that the optimal designs are close to fully dense. A new internal boundary
corresponding to a hole, for example, would be created if the value of the density
function decreases to the threshold value in a region.

To define the density function, the feasible domain is divided into triangular or
rectangular elements. The density function is interpolated within each element. A
contour of the density function corresponding to the threshold value passes through the
element if some nodes of the element have nodal density values higher than the
threshold value while others have values below. In this project, linear or bilinear
elements as well as B-spline elements were used. The contour is therefore plotted by
joining the points along the contour that has density value equal to the threshold value.
A C° continuous density function ensures C° continuous boundaries for the final shape,
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whereas, quadratic and cubic B-spline elements provide a C! and C? continuous density
functions and contours respectively.

The mesh used for defining the density function can also serve as the finite
elements for structural analysis. The values of the density function at the nodes serve as
the design variables of the optimization problem. Initially, the nodal density values are
set equal to unity for all the nodes so that the geometry is identical to the feasible
region. During the optimization process the nodal density values, ¢, are modified by
the optimization algorithm which iteratively searches for the optimal values of the
nodal densities such that the defined objective function is minimized.

For the application of interest in this project, the objective is to design a structure
that deforms in a particular fashion when subjected to electromagnetic forces. Therefore
the objective function is defined as the error between the desired deflection and the
actual deflection. In this project, the method was applied only to planar (2D) problems,
such as plane stress and plane strain. In addition to minimizing this objective function,
a constraint on the total mass of the structure is applied.

Structural synthesis is the inverse of the structural analysis problem. The

structural analysis problem is typically stated as a principle of virtual work (PVW),

j {6c} [D] {c} dQ = j f,-5u dQ+ j f,-ou dr (3.2)

The domain Q represents the shape and topology of the component whose
structural properties are being analyzed. The finite element method is used to solve for
the displacement field u(x) for every x belonging to Q.

The shape and topology synthesis problem involves solving for a domain Q that
optimizes some structural property for given loading and boundary conditions. The
geometry Q is defined as the region within the original feasible domain Qg where the
shape density function has a value greater than the threshold value. The minimization
problem can be stated as

Minimize I1(¢) = i(ui —u)? (3.3)

subject to,

M(9) = [¢ d < M, (3.4)

[ {3e}' [D(9)] {e} dQ 35)

26



b <¢<1 (3.6)

I1(¢) is the sum of the square of errors in the computed nodal displacement at
nodes where a desired value of displacement has been specified, where, ¢(x) is the
density function. It is assumed that a desired value of displacement u; has been

specified at ‘m” nodes and u; is the computed value of the displacement. Equation (3.4)

describes the constraint that the mass M of the component should be less than or equal
to a specified value Mo.

The optimization problem stated in equations (3.3)-(3.6) can be solved using
mathematical programming techniques or optimality criteria methods. The objective
function is non-linear and the constraint on weight is linear. Each evaluation of the
objective function requires a computationally expensive finite element analysis to
compute the displacement at the nodes of the finite element mesh for the structure.
Therefore, an algorithm that does not require excessive number of function evaluations
is preferred. A modified form of sequential linear programming [29] was used for the
results presented in this report.

When the shape defined by the density function varies, the structural properties
must vary accordingly. This implies that the material property coefficients defined in
the matrix [D] must depend on the density function ¢(x,y). We seek relations that are
simple and therefore easy to integrate over each element when density varies linearly
within each element. In addition we would like relations that lead to clearly defined
topologies so that the final shape obtained is fully dense and the density function
transitions sharply at the boundary from full density to the lowest possible (threshold
value).

The material property-density relation should be such that if the density decreased
in a region, the stiffness should decrease causing the material to become weaker in that
region. This would be achieved if the slope of the objective function with respect to the

variables, %H(u) , is negative. The optimization algorithm would therefore decrease the
|

density in regions where material is under-utilized causing either new boundaries
(holes) to be created in such regions or causing existing boundaries to shrink inwards.
We have used some linear and non-linear material property density relations that
satisfy this criterion.

Homogenization method has been used to determine the relation between
porosity (or density) and elastic constants by assuming a microstructure. Typically a
square unit cell with a circular, square or rectangular void is used to determine the
elastic constants. The size of the void is changed to vary the porosity (or density) and
the elastic constant are computed for various values of porosity. Since the
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homogenization process is computationally expensive the elastic constants are
computed for a few values of porosity and then a curve is fitted over these computed
points to obtain a relation. However, the relation obtained is not unique because it
depends on the microstructure assumed. The optimal designs that are obtained will also
be therefore different based on the assumption used. This raises the question as to
which relation is ideal for computing optimal shapes. Since the real material does not
have varying density or porosity it is preferred that the optimal designs are fully dense.
Any relation that leads to such design is therefore preferable.

In our implementation, polynomial relation was assumed between elastic constant
and the density function. For example, it can be assumed that the elastic modulus of the
material is a quadratic function of the density. Similarly, one could use higher order
approximations. Just as different microstructure assumptions lead to different optimal
designs when homogenization method is used, different polynomial relations between
elastic modulus and density lead to different designs. The criterion that we used for
selecting the relation is the sharpness of the density transition at the boundary. In other
words, we want the material inside the shape to be fully dense (¢=1) and the material to
have the lowest possible density where the holes are located. At the boundary we want
the density to transition sharply from the highest value to the lowest value, so that we
have clear and well defined boundaries. When a linear relation is assumed sharp
boundaries are not obtained except when the threshold value is set close to 1. It was
found that in general, higher order approximations of the material property-density
relations lead to the desired behavior.

Assuming p" order polynomial relation between the elasticity modulus and the
density function, we get the following material property-density variation for plane
stress problem:s,

E4P
d =
B2
Ev¢P
dlZ = 1-V2 (3.7)
__E¢
B 2(1+v)

The coefficients d; are the elements of the elasticity matrix. Note that in the above

relation we do not assume that Poisson’s ratio changes with density and therefore, for
this approximation the material coefficients reduce to zero as density goes to zero, that
is, di=0 for ¢=0. The elasticity matrix can then be conveniently defined as

[D,(¢)]=[DI¢" (3.8)
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where, [D] is the elasticity matrix for plane stress or plane strain.

In order to use a mathematical programming algorithm to compute the optimal
design, it is necessary to compute the gradient of the objective function and the
constraint. The gradient of the objective function is:

ol & « OU.
—=)> 2(u,—u;)—* (3.9
o, .le o,

The gradient of nodal displacements can be computed using the standard design
sensitivity analysis methods. The equilibrium equations are reduced to a set of linear
simultaneous equations by the finite element method which is usually expressed as

[KJ{U}=1{F} (3.10)

{U} is the displacement vector that contains u,, the displacement components at
the nodes and {F} is the load vector. The gradient of u; can be computed by solving the

equation

[K]—=—=1{} (3.12)

——HUj (3.12)

4. Examples of Topology Design
Gripper Mechanism Design

As an example, let us consider the design of a mechanical gripper. The mechanism
is supported at the two corners on its left edge and input forces of magnitude 50000 N
are applied in the middle of the left edge as shown in Fig. 13 . Vertical displacements
desired at the points A and B that causes them to move towards each other or to grip a
work-piece. Forces of magnitude 5000 N are applied at the points A and B, where
displacements are expected, to model the resistance of the work-piece once the
mechanism comes in contact with the work-piece.

The size of the design domain is 5 x 5 m as shown in Fig. 13 . Displacements of
magnitude 0.00025 are prescribed at two corner points A and B and displacements of
magnitude 0.000025 are prescribed at the points where the input forces are applied.
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-
Fig. 13 Feasible domain for gripper mechanism design with a 30 x 30 mesh

The material of the domain is assumed to be steel with modulus of elasticity equal
to 200 GPa and the Poisson’s ratio of 0.3. The original domain has been discretized with
a sparse mesh of 30 x 30 elements.

(a) (b)

Fig. 14 Topology results for a mechanical gripper design with a 30 x 30 mesh using (a)
Quad 4N elements (b) B-spline 9N elements (c) B-spline 16N elements

The topology results of the optimal designs are shown in Fig. 14 . The topology
designs are obtained using bilinear 4 node quad, B-spline 9 node and B-spline 16 node
elements. SIMP interpolation method with the penalty parameter p = 4 for the density
function and the allowable material volume fraction of 0.3 is used. It can be observed
that with the use of sparse mesh, the bilinear quad 4-noded elements results in a shape
that is not well connected and have problems in smooth representation of the
boundaries. The optimal geometries obtained using B-spline elements are well
connected and smoother without any checkerboard patterns.
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(b) (c)

Fig. 15 Topology results for a mechanical gripper design with a 50 x 50 mesh using (a)
Quad 4N elements (b) B-spline 9N elements (c) B-spline 16N elements

The topology results with an increased mesh refinement of 50 x 50 elements are
shown in Fig. 15 for quadrilateral 4-node (Q4), B-spline 9-Node and B-spline 16-Node
elements. It can be observed that with the increase in mesh refinement, even the Q4
elements converge to a better smooth shape and the B-spline elements also converge to
better smooth shapes.

To evaluate the validity of the designs obtained using B-spline elements in IBFEM,
finite element models similar to the optimal designs were created using the commercial
FEA package ABAQUS. The finite element model of the optimal design along with the
loads and boundary conditions are shown in Fig. 16 . Bilinear quadrilateral 4-noded
plane stress elements are used for the analysis. A superimposed image of the deformed
and un-deformed shapes of the geometry is shown in Fig. 16 (b). The deformation of the
mechanism was indeed in the direction as intended. Thus, the designs obtained for the
gripper mechanism are indeed valid.

(a) (b)
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Fig. 16 Results from ABAQUS for the gripper mechanism (a) FE Model of the gripper
mechanism with loads and boundary conditions (b) Deformed shape of the gripper
mechanism

Displacement Inverter Mechanism Design

The feasible domain for the design of a displacement inverter mechanism is shown
in Fig. 17 . The mechanism is supported at the two corners along its left edge and input
forces of magnitude 50000 N are applied at the middle of the left edge as shown in Fig.
17 . Displacements are expected at the output ports at the middle of the right edge in the
negative x-direction. Forces of magnitude 5000 N are applied at the output ports in the
direction opposite to the direction in which displacements are required.

Input
Ports

Qutput
Ports

Fig. 17 Feasible domain for displacement inverter design with a 30 x 30 mesh

The size of the design domain is 5 x 5 m as shown in Fig. 17 . Displacements of
magnitude —1x10°° (in the negative x-direction) are specified at output ports and
displacements of magnitude 1x10°are specified at the points where the input forces are
applied. The material of the domain is assumed to be steel with modulus of elasticity
equal to 200 GPa and the Poisson’s ratio of 0.3. The original domain has been
discretized with a sparse mesh of 30 x 30 elements.

The topology results of the optimal designs for the inverter mechanism are shown
in Fig. 18 . The topology designs are obtained using bi-linear 4 node quad, B-spline 9
node and B-spline 16 node elements. SIMP interpolation method with the penalty
parameter p = 4 for the density function and the allowable material volume fraction of
0.2 is used.
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(a) (b) (c)

Fig. 18 Topology results for a displacement inverter design with a 30 x 30 mesh using (a)
Quad 4N elements (b) B-spline 9N elements (c) B-spline 16N elements

With the use of a sparse mesh of 30 x 30 elements, the design obtained using
bilinear quad 4-noded elements is not well connected and the boundary representation
is not smooth. On the other hand, B-spline elements result in geometries that have
smooth and clear boundaries. Checkerboard pattern is inherently eliminated in B-spline
elements.

The second part of this example is performed on a similar feasible domain with a
refined mesh discretization. A refined mesh discretization of 50 x 50 elements was used
to validate if the topologies obtained would be any different from the topologies
obtained using a sparse mesh. The topology results of the optimal designs are shown in
Fig. 19 . With a refined mesh, the design obtained using bilinear Quad 4-node elements
has considerably improved with clear boundaries. B-spline elements also result in
geometries that have smooth and clear boundaries.

(a) (b)

Fig. 19 Topology results for a displacement inverter design with a 50 x 50 mesh using (a)
Quad 4N elements (b) B-spline 9N elements (c) B-spline 16N elements
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The designs obtained using B-spline elements in IBFEM were validated using a
commercial FEA package to evaluate the working of the displacement inverter
mechanism. Commercial FEA package ABAQUS is used to evaluate the designs. The
finite element model of the optimal design of the displacement inverter mechanism
along with the loads and boundary conditions is shown in Fig. 20 (a). Bilinear 4-noded
quadrilateral elements are used for the analysis. Fig. 20 (b) shows the superimposed
image of the deformed and un-deformed geometries. The tip of the inverter is expected
to move in the negative x-direction when a force is applied in the positive x-direction on
left edge. The deformed shape shows that the designs obtained for the inverter
mechanism are valid.

(a) (b)

Fig. 20 Results from ABAQUS for the inverter mechanism (a) FE Model of the inverter
mechanism with loads and boundary conditions (b) Deformed shape of the inverter
mechanism

B-spline elements thus demonstrate the ability to obtain the optimal shapes even
with sparse mesh discretizations when compared with the bilinear quadrilateral
elements which required dense mesh discretization to obtain similar optimal shapes.

Flapping Wing Mechanism

A flapping wing mechanism for a micro air vehicle is to be designed to obtain
large displacements at the tip of the wings. The wings will be activated by an magnetic
actuator placed in the fuselage. The shape of the casing for the actuator is to be obtained
using topology optimization so that it functions as a compliant mechanism as well as
the support for the wing. The feasible domain for the flapping mechanism with a mesh
size of 70 x 35 elements is shown in Fig. 21 . A polynomial power of p =3 and a volume
fraction of 0.5 is used to obtain the optimum topology results. The material of the
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structure is assumed to be steel with a modulus of elasticity 200 GPa and Poisson’s ratio
of 0.3.

| X
Fig. 21 Feasible domain for a flapping wing mechanism with 70 x 35 elements
Displacements of magnitude 2x107° are specified at the wing tips and the entire
structure is fixed at the centre of the bottom edge. The topology results obtained using

bilinear 4-node quadrilateral elements, B-spline 9N elements and B-spline 16N elements
are shown in Fig. 22 .

Fig. 22 Topology results for the flapping mechanism for a 70 x 35 size mesh and a volume
fraction of 0.5 (a) Quad 4N elements (b) B-spline 9N elements (c) B-spline 16 N elements
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To validate the design of the mechanism obtained using topology optimization, a
finite element analysis is performed on the final topology of the structure. Fig. 23
shows a superimposed image of the deformed shape on the optimum structure. As
expected a displacement of 2x10~° is obtained at the wing tips as shown proving the
validity of the design.

Displacement

Magnitude
2.005E-5

1.805E-5
1.604E. 5

1.404E-5
1.203E-3

1.003E-5

8.02E-6

6.015E-6

4.01E-6

2.005E-6

3.425E-11

Fig. 23 Results from a finite element analysis on the optimum structure for the flapping
mechanism
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IV. MAGNETOSTATIC ANALYSIS USING IMPLICIT
BOUNDARY FINITE ELEMENT METHOD

1. Overview

Magnetostatic analysis and force computation for magnetically actuated devices
involves modeling an assembly of components with different material properties. When
traditional finite element method is used for such analysis, it requires a conforming
mesh that approximates the geometry of the assembly. The mesh must contain nodes
along the external boundaries and the interfaces between parts. The edges / faces of the
elements must approximate these boundaries and interfaces as shown in Fig. 24 . Often
the geometry is not well approximated. Generating such a mesh is difficult and, despite
decades of research, 3D mesh generation (especially using hexahedral elements) is still
not a fully automated process and in fact requires significant user input. To address
mesh generation difficulties several meshless methods [30] have been proposed that still
need a well-placed distribution of nodes but do not require these nodes to be connected
into elements. Some of these methods have been successfully used for magnetostatic
analysis [31]-[36]. These methods use interpolation and approximation schemes that do
not need connectivity between nodes. However, computationally these methods are
significantly more expensive and they still approximate boundaries and interfaces using
nodes along them.

Interface boundaries

(a) 33 elements (b) 82 elements

Fig. 24 2D FEM mesh

An alternate approach to avoid mesh generation difficulties is to use a structured
background mesh to represent the solution while using accurate equations of curves
and surfaces to represent the boundaries. A structured mesh consists of uniform regular
shaped elements and is therefore easy to generate. Extended finite element method (X-
FEM) [37]-[39] is one such method, which uses a structured mesh and implicit equations
for the boundaries and interfaces. In the X-FEM approach, the solution is enriched near
singularities and discontinuities such as cracks. An important application of this
method has been fracture mechanics, where crack propagation [40]-[41] is simulated by
modifying the equations of the crack rather than regenerating the mesh. Boundary and
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interface conditions have been imposed using Lagrange multiplier and Penalty methods
for X-FEM.

The Implicit Boundary FEM (IBFEM), uses solution structures constructed using
implicit equations of the boundaries to enforce boundary and interface conditions. This
method has been applied to 2D and 3D elastostatics and steady state heat transfer
problems [42]-[45]. Structured mesh, which has uniform, undistorted elements, can be
used for the analysis because the implicit boundary method does not require nodes on
the boundary to impose boundary conditions. Structured mesh, such as the examples
shown in Fig. 25 is easy to generate since all elements are regular shaped and the grid
does not have to conform to the geometry.

Interface bound&A
Interface boundary /

e + . + =

(a) Inner conductor : Grid1  (b) Insulator : Grid 2  (c) Outer conductor : Grid 3  (d) Coaxial cable : Total Grid

(a) 2D structured mesh

(b) 3D structured mesh

Fig. 25 Structure mesh for multi-material systems

For modeling multiple materials and assemblies, a separate grid is generated for
each material or part as shown in Fig. 25 . Within overlapping elements at the interface,
the piece-wise interpolation within each grid is combined into a single solution
structure.

2. Governing equation and Weak form for 2D Magnetostatics

Under static and quasi-static conditions, the governing equation for 2D
magnetostatics is
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where, u is the magnetic permeability, A is the component of magnetic vector
potential in the x,-direction (the direction normal to the plane of analysis) and J is the
current density in the x,-direction. In the finite element method, essential boundary
conditions are specified by assigning values for the nodes along the boundary. When a
structured grid is used for the analysis, there may not be any nodes available on the
boundary. Solution structures that use the equation of the boundary to impose essential
boundary condition have been used by several authors [46]-[48]. For 2D magnetostatics,

a similar solution structure for the x, component of magnetic vector potential could be
defined as

A(X) = D(X)A%(x) + A*(X) = A°(X) + A*(X) (4.2)

where, A° is a grid variable that is defined by piece-wise interpolation or using B-
spline approximation [44] over a structured grid. A® is the boundary value function
which has a value equal to the prescribed boundary conditions at the boundaries. D(x)
is a weighting function defined such that D(x)=0 at boundaries where essential
boundary conditions are applied so that A=A* at these boundaries. The boundary value
function, A*, is constructed by interpolating nodal values within elements. The nodal
values are selected such that at the boundary it has a value equal to the specified
boundary condition. Note that D(x)=0 can be any type of implicit equation of the
boundary but in general it is hard to construct a global function that is zero only at the
boundaries with essential boundary conditions. Furthermore, a global weighting
function can lead to poor convergence especially if it is nonlinear. In the implicit
boundary method, approximate step functions referred to as Dirichlet functions or D-
functions [43]-[44] are used as the weighting function. At any given point xeR?, the D-
function is defined as

0 #(x) <0
D(x) = 11— (1-¢(x)/8)" 0<p(x) <& (4.3)
1 #(X) >0

where, ¢(x)=0 is the signed distance function or the distance from the boundary
with a negative value if the point x is outside the domain. s is a parameter which
controls the width of the transition band over which the D-function transitions from 0 to
1. In the limit as 50 the D-function approximates the Heaviside step function. The

advantage of using an approximate step function as weighting function is that it
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transitions from 0 to 1 within boundary elements. Therefore, they can be locally defined
within the required boundary elements and for all other elements D(x) =1. This implies
that the internal elements are not influenced by the weighting function and are
therefore identical to traditional finite elements. Moreover, all the internal elements are
identical to each other and have the same stiffness matrix since they have the same
shape and size. The value of s is chosen to be less than one-tenth of the element length
in our numerical implementation so that the D-function closely approximates the
Heaviside step function. Using the solution structure defined in (2), the weak form of
the 2D magnetostatic equation can be derived as

j V(SA) 1 'V(A)dV =

j (SA%)JdV + j (SA°)H 5dS — j V(SA%) 'V (AY)dV o

\

where, sA° is the virtual magnetic potential vector and H, is the tangential
component of the magnetic field.

The grid variable, A°, is interpolated within each element as A’ ={N} {A°} where,
{N}' is a row matrix containing the shape functions and {A°} is a column matrix

containing the nodal values of the grid variable. Similarly, the boundary value function
is represented within each element as A*={N}"{A*} where, {A*} is column matrix

containing the nodal values assigned such that A* has the prescribed value at the
boundary. Note that the same shape functions are used to interpolate A’ and A*. If all
the essential boundary conditions are homogeneous, so that A=0 is the only prescribed
boundary condition, then the boundary value function A* is zero everywhere and can
be eliminated from the solution structure. Otherwise, nodes near the boundary are
assigned values of A* equal to the prescribed value. For 2D problems, the gradients of
the boundary value function A®is expressed as

. Joa oA N, . .
VA _{8x1 6x2} 2o A BIAY (45)

The gradients of the homogenous part of the solution A® is stated as

S S T
VA - JOA OA
0X, OX,

(4.6)
N, D)y = (ng

i i
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[B] is decomposed into two matrices [B,] and [B,] such that only [B,] contains
derivates of the D-function which can have very large values near the boundary.

B.)=8=p2"

I and 4.7)
[B,1=B; =N, D

S (4.8)

The element matrix to be assembled into the global equations can be defined as

(- (87 u [BJon, ~[KsJo[s+

(4.9)

= [[B.] «*[B.]de,

a (4.10)

< [[8.] wimJen,

(4.11)

(K= [([8.] w[B.]+[B.] w[B.]Jo0
. (4.12)

[B,] which contains the derivatives of D-function, is non-zero only within the

narrow transition band near the boundary. Therefore, for all internal elements and
boundary elements without essential boundary conditions[K;] and [K;] are zero. For

boundary elements [K; ] is evaluated by subdividing these elements into triangles and

integrating only within triangles that are inside the geometry. For boundary elements
with boundary conditions, the volume integral for computing [K;] and [K;] can be

converted to surface integrals because they contain [B, | which is non-zero only within

the narrow transition band near the boundary. The components of [K;] can be
expressed using index notation as

Ks; jN 47N AT,
(4.13)

where,

U [ ]|V¢| J (4.14)
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In the preceding equation, the volume integral in (11) has been converted into a
combination of surface integral along the boundary and an integration over ¢. Similarly,
the components of [K;] can be stated as

N, ON,
KE = —L 4N +—Lu7'N; |AdT
3ij 1'—[;[6)(;( H j an H i k e

(4.15)

where,

¢ b 1
([ g

(4.16)

All components of [K; |, [K;], and [K;] are evaluated using Gaussian quadrature.

For surface integrals, the boundary within element is approximated by sufficiently
small straight line segments to achieve accuracy.

3. Governing equation and Weak form for 3D magnetostatics

Several alternate formulations have been proposed in literature for 3D
magnetostatic analysis using finite element method [49]-[57]. A formulation based on
magnetic vector potential, A, was used in our implementation. The governing equations
for 3D magnetostatics expressed in terms of magnetic vector potential is

Vx(WxA)=J in Q (4.17)

where, Q is the domain of analysis. The boundary of the analysis domain I
consists of regions with specified natural boundary conditions and regions that are
open boundaries, which are used to artificially truncate the analysis domain when in
reality it extends to infinity. Often homogeneous essential boundary conditions are
used on these open boundaries as an approximation if the boundary is far away from
the sources. Several special techniques for modeling such open boundaries have been
developed such as the infinite elements and asymptotic boundary condition [58].
Natural boundary conditions can be applied on boundaries (denoted as I';) with
known tangential component of the magnetic field or on boundaries (denoted as I';)

with known normal component of the flux density. If these boundaries are planes of
symmetry then n-(VxA)=0 on I'; and nx(WxA)=0 I',. To ensure uniqueness of

the solution, the following essential boundary conditions are used to enforce these
conditions [51].

nxA=0 onl, (4.18)
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n-A=0 onl’, (4.19)

Fig. 26 shows an example domain of analysis which may contain regions of
different materials (€2, and Q,) as shown. I';, is the interface surface between the two

sub-domains Q, and Q, as shown in Fig. 26 . At the interface, the tangential component

of the magnetic field and the normal component of the flux density are continuous.

Fig. 26 Analysis domain and boundaries

The weak form for these governing equations and boundary conditions, obtained
using the weighted residual method [59], is

VxoA)-(WxA)Q = OA(Hxn)dor' + | JOAdQ (4.20)
Q

Q Ty+Tg

where, JA is the vector weighting functions. This weak form is used in the
traditional FEM to compute the element matrices by integrating the left hand side over
the volume of each element. When a structured mesh is used for the analysis, the
boundaries pass through the elements so that it is necessary to integrate over partial
volume of the element that is inside the boundary. Several techniques [60]-[61] have
been developed for integrating over partial elements approximated as polygons.
Alternatively, the partial boundary elements can be subdivided into triangles (for 2D)
or tetrahederons (for 3D) for integration purpose. The generated triangles or
tetrahedrons are used only for quadrature and not to represent the solution. Even
though the tessellation of the boundary elements for integration approximates the
boundary, the size of the triangles/ tetrahedrons can be much smaller than the elements
of the grid. So the geometry can be represented reasonably accurately even if a sparse
mesh is used for the analysis. Essential boundary conditions are applied in traditional
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FEM by assigning values to the nodes on the boundary. However, when a structured
mesh is used there may not be nodes available on the boundary. In the next section, a
solution structure is described that is constructed using the implicit equation of the
boundary to enforce essential boundary conditions.

Several structured mesh based approaches for analysis have used solution
structures [42]-[48] constructed using implicit equations of boundary, to impose
essential boundary conditions. Here we present the implicit boundary method, where
step functions are used as implicit equations to construct solution structures. For three-
dimensional magnetostatics, a solution structure for the magnetic vector potential A(x)

could be defined as
A(X) =[D(X)]AY(x) + A% (x) = A*(x) + A*(x) (4.21)

In the preceding equation, A? is a grid variable vector that is defined by piece-
wise interpolation or using B-spline approximation [44] over a structured mesh and
D(x) is diagonal matrix whose components are defined such that D;(X)=0 at the

boundaries where essential boundary conditions are applied on the ith component of
A . This ensures that A =A" at the boundary. A’ is the homogenous part of the

solution and A® is the boundary value function. The boundary value function is
defined such that it has value equal to the prescribed boundary conditions at the
boundaries. Therefore, diagonal components of the D matrix, D, (X), are implicit

equations of the boundaries on which essential boundary conditions are applied. It is
hard to construct such a function that is zero only at the boundaries with essential
boundary conditions. Moreover, if this weighting function is nonlinear and defined
globally, then this solution structure can lead to poor convergence. In the implicit
boundary finite element method, approximate step functions are used as the implicit
equation. At any given point xeR® this step function, referred to as the D-function, is
defined as

0 #(x)<0
D,(x) ={1-(1-¢(x)/5)" 0<p(x) <6 (4.22)
1 #p(X) =0

where, #(X) is the signed distance function for the boundary. The signed distance

function for a boundary is evaluated at any point X as the distance of the point from the
boundary. The function has a negative value if the point is outside the domain. The step
function D;(X) transitions from 0 to 1 over a band whose width is controlled by the

parameter §. In the limit as § -0 the D-function approximates the Heaviside step
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function. In our numerical implementation, the value of the parameter & is chosen to be
less than one-tenth of the element length. The advantage of using an approximate step
function as weighting function is that it transitions from 0 to 1 within boundary
elements. Therefore, they can be locally defined within these elements. For all other
elements, which do not have a boundary with prescribed essential boundary conditions,
we can set D;(x) =1. This implies that the internal elements are not influenced by the

weighting function and since the structured mesh is made of uniform elements that are
identical to each other, all the internal elements have the same stiffness matrix.
Substituting the solution structure (5) into the weak form (4), a modified weak form of
the 3D magnetostatic equation can be derived as

I(VXaAS)-(vvaS Ja= jJ&ASdQ—j(W&AS)-(vaAa)dQ (4.23)
Q Q Q

where, 5A® is the virtual magnetic potential vector.

The grid variable vector, A% , is interpolated within each element as
A® =[N {Ag} where, [N]' is a matrix containing the shape functions and {Ag} is a
column matrix containing the nodal values of the grid variable vector. For brick
elements with 8 nodes, the size of {Ag} is 24 because the nodal degree of freedom is 3.

Similarly, the boundary value function, A®, is defined by interpolating nodal values

within each element as A® =[N]' {Aa} where, {Aa} is column matrix containing the

nodal values of A®. These nodal values are assigned such that, at the boundaries, this
function will have a values prescribed by the boundary condition. Using the solution
structure, the magnetic flux for the boundary value function can be derived as

VxA®=[B°]{A} (4.24)

The ‘curl’ matrix [B®] for the boundary value function is defined as

[B°]=[[B°] [BS] .- [B.°]], where,

AN N, ]
oz oy
ON. ON.
BC |=| =L 0 200
[ ' J oz OX (4.25)
NN
oy OX

for ieZ =[1,N]. The curl of A° can be computed as
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VxA* =[B°]{A?}

(4.26)
For convenience, [Ec] is defined as a sum of two matrices such that the first one

only contains derivatives of the shape function and the second matrix contains the
derivatives of the D-function. [B®|=[B,° |+[B,° |, where

[B]={[Bu"] [B:7]
[B:"1=[[B"] [B2]

C

os]}
jos]]

1

_ R (4.27)
B - [Baf]]
i oN, oN; |
0 Dzz 8_ 33
Xy OX,
= ON, ON,
C i i
|:Bli ] Dlla_)(?) 0 _Daaa_xl (4.28)
ON, ON,
- D11 8_ Dzz 6_ 0
X, X, i
0 N oD, N oD;;,
' oX, ' oX,
[B.]=| N, oDy 0 -N, Dy (4.29)
OX, 0%,
_Ni aD].]. Ni aDZZ O
oX, OX,

In the preceding equations, i=1,2..n , where, n is the number of nodes per
element. The element matrix that is assembled into the global equations can be defined
as

()= J BT Ve o [ [ o ) o2

[K:]- j {[Ef T v[BS ]} do, o
(K= j {[E; Tv[BS ]} dQ, o)
[]= ({8 T VBT BT (BT oo

(4.33)
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Since [B,° | contains the derivates of D;(x), it is non-zero only within the narrow

transition band near the boundary. Therefore, for all internal elements and boundary
elements without essential boundary conditions [K;]| and [K;] are zero. Within the

transition band, the derivatives of D(X) can have large magnitude. For the boundary
elements with boundary conditions, the volume integral for computing [K; ] and [K;]

must be converted to surface integrals as follows to compute them accurately.

]:j{j( Iv[BS ])| ¢|d¢}dr (4.34)

0

—
A
w @
Il
Il
—
/_/_\
Ot
P —
—
os]l
-
o
| I—
=
<
—
os]}

S1+[BS] v[BS ]) |V¢|d¢}dr (4.35)

To derive the preceding equations, we make use of the fact that [B,°] is zero

except in the narrow band 0<¢<s. Therefore, the volume integral is converted into a
surface integral along the boundary I', and an integral over the transition band (normal
to the surface). Note that if ¢ is a signed distance function then |vg|=1. If the width of
the band ¢ is very small, then one can assume that the shape functions are constant
within the band, allowing the integral over ¢ to be determined analytically.
Alternatively, the integration over ¢ can also be evaluated numerically.

4. Solution structure for multi-material models

At the interface between materials with different magnetic permeability, the
normal component of magnetic field and the tangential component of flux density can
be discontinuous. The tangential component of the magnetic field and normal
component of the flux density are continuous. The required interface conditions,
expressed in terms of the magnetic vector potential are

x(MVxA)=nx(v,VxA,) (4.36)
n-(VxA,)=n-(VxA,) (4.37)

It is obvious that if the magnetic vector potential is continuous, that is A, =A,,

then the second condition (21) is automatically satisfied. The requirement for continuity
of the tangential component of the magnetic field (20) requires that the derivatives of
the vector potential should be discontinuous. To allow this discontinuity in the
magnetic field, separate grids are used for each material as shown in Fig. 25 . At the
interface, the elements from neighboring grids overlap. A solution structure is needed
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for overlapping elements, which ensures that the vector potential, A, is continuous
while flux density B and magnetic field H can be discontinuous. The following solution
structure was used for interface elements

A® =(1-D(x)) A% + D(x)A%? (4.38)

where, A? is the field interpolated or approximated within the element from grid
i, =1, 2), D(4(x)) is the approximate step function defined in (6) and ¢ (x) is the
implicit equation of the interface curve (represented using signed distance function).
Similar solution structure has been used to model material discontinuity for elasticity
problems [45]. The solution structure in (22) blends the solutions from the two grids
such that the vector potential is continuous at the interface. Note that this method for
blending the solutions uses a partition of unity as weighting functions. This solution
structure ensures the continuity of the solution throughout the analysis domain. It also
allows the derivatives (and magnetic field and flux density) to be discontinuous at the
interface. The gradient of the vector potential components are

aA { oA oD ., _OA® D .,
1- D) -——A"+D—+—A° (4.39)
J OX OX;  OX;

X; ] ]

For small values of 5, the gradient of D(X) can have large magnitude which in
turn acts as a penalty that tries to enforces A* =A®? at the interface so that the second
and third terms cancel each other. Therefore, the grid variable is approximately
continuous while the vector potential is exactly continuous. The slope of the grid
variable and therefore the vector potential can be continuous or discontinuous as
dictated by the equilibrium equations.

Substituting (22) into the weak form, the element matrices for the interface
elements can be computed. Again, since gradient of D(X) is very large near the
interface, it helps to decompose the matrices into terms that only contain derivatives of
the shape functions and those that contain derivative of D(X). As illustrated in the
previous section, all the terms that involve derivates of D(X) can be converted from
volume integrals into surface integrals for accurate numerical evaluation. These
techniques are described in detail in [45] for elastostatics and have been adopted here
for magnetostatics.

5. Magnetic force computation

Several techniques for computing magnetic forces can be found in literature [62].
These include the Maxwell’s stress tensor, equivalent source method and the virtual
work principle [63]-[66] to list a few. These approaches have been implemented using
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FEM and therefore can also be used with the implicit boundary FEM. Since we assume
that the exact equation of the surface is available (preferably as a parametric equation),
it is easier to implement a method that integrates surface force densities to compute the
nodal forces. The basic equation for magnetic force density [67] can be derived from
energy balance equations and is given by

m

f :—EHZVy+J><B
2 (4.40)

The first term in (19) involves the gradient of magnetic permeability. Therefore,
this term is of significance only at the boundary between ferromagnetic materials and
surrounding non-ferromagnetic materials. The second term is a body force that exists
on current carrying conductors in the presence of magnetic flux density. To compute
the structural response due to these magnetic forces, a subsequent solid mechanics
analysis is necessary. The weak form for solid mechanics problems is the principle of
virtual work which can be stated as follows:

[, {8&}" [C]{e}dv = f,-8udV + [ t-suds (4.4)

The first term on the right hand side of the weak form is the virtual work done by
magnetic forces. This term can be evaluated as follows:

1
[ fo-dudv =—| > HIVududv + [ (3xB)-sudv (4.42)

If we assume that the permeability is constant within the materials then the first
term in (21) makes a contribution only at the boundary. For a ferromagnetic object with
permeability, p,, surrounded by a medium whose permeability is pn,, the permeability
can be considered to change from one value to the other over a band along the
boundary whose width, measured in the normal direction, is An. The limit of An—0
represents the discontinuous variation at the boundary. The gradient of the
permeability within this band can then be written as:

Vu=—n (4.43)

The unit vector fi is the direction normal to the boundary between the two
materials with different permeability and points in direction of increasing permeability.
Using this expression in the first term of (21), we get,
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Therefore the volume integral can be converted to a surface integral where, S_ is

the surface separating two materials with different permeability. The virtual work due
to magnetic body forces can now be evaluated as

[ fo-dudv = f,-udv + | f,-dudv (4.45)

where, f,=JxB is body force and fsz—%J“1H2ﬁdu is a surface force density (or
H2

traction). The surface force density term can be evaluated by expressing the square of
magnetic field as a function of permeability. If there is no surface current then the
tangential component of the magnetic field does not vary across the boundary and can
be treated as a constant. Similarly, the normal component of the magnetic flux density is
constant (by Gauss’s law) and does not vary across the boundary even though the
permeability is different on the two sides of the boundary. The square of the magnetic
field can be expressed as the sum of the squares of the tangential and normal
components of the field as:
2 2 2 2 BZ
H=H +H =H +—- (4.46)

2

n

Both the tangential component of magnetic field (H, ) and the normal component
of the magnetic flux density (B,) can be treated as constants for the integration in
computing surface traction since these quantities do not vary in the direction normal to

the interface between the two materials. Using the preceding equation for the square of
magnetic field to compute the surface traction due to magnetic forces we get

_ l My 2 Brf ~
fs ——Ej'uz(Ht +andu

1 1(B> B2)]|.
= —EHIZ(Ml_MZ)jLE(H_“—H_“Hn (4.47)
L 1 2

2l ) 2\, )t
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where, 4 and f, are the permeability and the outward normal vector of the im
material and B, is the tangential component of the magnetic flux density within the in
material. If p, <y, it follows that f, <0 therefore the direction of the surface traction f; is
opposite to i, which means that it acts in the direction of decreasing permeability. In
[66] an expression for the surface force densities, similar to (26), between two linear
media has been deduced from a more general expression for magnetic force.

At the interface elements, magnetic forces can be computed by integrating the
magnetic force density over the interface boundary. The nodal forces at the boundary
elements of each grid can be computed by integrating over the piece of the boundary
that passes through the element. In other words, for a boundary element whose
material property is 4 the nodal forces are computed as:

1(B? B?).
Fl_ NT— it _ n ds 4.48
{R)=],IN] 2[74 _an' (4.48)

The unit normal A =n,i+n,j is constructed such that it points outwards from the

material or part boundary. The tangential and normal components of the flux density
are computed from the vector potential as
oA OA
Bi=——Nut—=-Np
OX, X,
AL oA

(4.49)
B

In traditional FEM the integration over the interface boundary requires finding the
elements at the interface and determining which edge or face lies along the interface. In
the implicit boundary approach, since the equations of the interface are available for
each part/material, it is very easy to integrate (27) over these boundaries to evaluate the
nodal forces for each part separately. The boundary passing through each element is
approximated by straight lines or triangles for the purpose of integration and Gauss
Quadrature is used to perform the integration.

6. Results and discussion

Several examples are presented here that were used to validate the implicit
boundary method. Some of these examples have analytical solutions with which to
compare the computed results. This allows us to not only verify the accuracy of the
results but also study the rate of convergence and compare with similar results using
the traditional finite element method. Some examples are modeled using 2D and 3D
elements for comparison and validation.
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Coaxial cable

A coaxial cable, which consists of an inner conductor, an insulator, and an outer
conductor, is modeled as shown in Fig. 27 using three separate structured grids. Due to
circular symmetry of the geometry, only a quadrant of the coaxial cable cross-section is
created. The radii of the inner conductor, the insulator and the outer conductor are a, b
and c. The inner and outer conductors carry the same amount of total current in
opposite directions. The total current flowing through each conductor is | . The current
flows in the axial direction (z-direction) and the current density is assumed to be
uniform.

Interface bound%A
Interface boundary /

e + . + =

(a) Inner conductor : Grid1  (b) Insulator: Grid 2  (c) Outer conductor : Grid 3  (d) Coaxial cable : Total Grid

Fig. 27 Structured mesh

The analytical solution of the magnetic field in circumferential direction can be

derived as
r(Zﬁaz)fll 0<r<a
H, - (27”)-1 I1 ,a<r<b
(c?=r?*)(c’-b*) (22r)"1 ,b<r<c (4.50)
0 ,C<r

where, r is the radial distance. The following values of current and radii were
used in the numerical model: 1 =1000A, a=0.5, b=1, and ¢=1.5 mm.

Fig. 28 shows the magnitude of the magnetic field that was computed using the
quadratic B-spline elements. It shows that the maximum magnetic field value is at the
interface between the inner conductor and the insulator and has a value of 3.182x10?
A/mm. This is very close to the value obtained from the analytical solution which is
3.183x10° A/mm.
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Fig. 28 Magnitude of the magnetic field

For 3D analysis it is necessary to first compute the current density by solving the
electrostatics equations. Then using the computed current density, magnetic field is
obtained through 3D magnetostatic analysis. The governing equations for the electro-
magnetostatic problem is

v (Ovv) =0 in Q
. (31)
Vx(WxA)=J in Q
where, the current density for magnetostatics is J=—-oVV . Fig. 29 shows the
coaxial cable model using three separate structured grids.

Fig. 29 3D coaxial cable model with the structured grid

The electric conductivity in the conductors is set to 10°S/mm and 10°S/mm in
the insulator. In order to obtain | =1000A, the voltage difference in the top and the
bottom surfaces is set to 0.25 V in the inner conductor and 0.05 in the outer conductor.
The current density of the inner conductor is computed as 1273 A/mm2 and 254.6
A/mm? in the outer conductor to carry the amount of current.
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Fig. 30 Current density in z-direction for 3D coaxial cable

Fig. 30 shows computed current density in z direction by 3D electrostatic analysis.
The calculated current densities of the inner conductor and the outer conductor are 1259
and 365 A/mm?.
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Fig. 31 Magnetic field for 3D coaxial cable

Fig. 31 shows the magnitude of the magnetic field that was computed using 8
brick node elements. It shows that the maximum magnetic field value is at the interface
between the inner conductor and the insulator and has a value of 3.351x10°A/mm. This is
close to the value obtained from the analytical solution which is 3.183x10*A/mm.
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Fig. 32 Magnetic field versus radius

Fig. 32 shows the magnetic field in the hoop direction varying with the radius. In
the figure, results obtained by hexahedral 8-node elements are denoted as HS8. This
element provides a piece-wise trilinear interpolation for the vector potential. Therefore,
the derivatives are not continuous without smoothing. The same results after
smoothing are denoted in the figure as H8S. After smoothing, the result of IBFEM is
very close to the analytical solution. Fig. 33 shows the convergence of H1 error norm for
this problem using trilinear (H8) elements which is the root mean square error in flux
density field over the domain and can be defined as

-

(33)

where, B® is the exact value of the magnetic flux from the analytical solution and
B" is the corresponding computed value.

55



10 -

Log(H1 Norm)
L
O\
1

10°

Log(Num of nodes)

Fig. 33 Convergence of H1 norm6.3. Plunger solenoid actuator

Switched Reluctance Motor

A 2D planar model of the Switched Reluctance Motor (SRM) is shown in Fig. 34 .
SRM is a DC motor where the stator has windings around the poles while the rotor does
not have any windings. Current is applied to the coils around the poles of the stator
sequentially to produce a torque on the rotor as it rotates.

(a) Aligned Position (b) Unaligned Position

Fig. 34 Switched reluctance motor

Reference [68] provides the dimensions of the motor that are used in this example.
The stator and the rotor are made of iron with relative permeability of 2000. A quarter
of the motor is modeled in both its aligned and unaligned orientation. The number of
turns in the coil is assumed to be 500 and the current is 2 A. Currents only flows into
coils attached to the top pole of the stator. Essential boundary condition (A=0) is
imposed on peripheries of the shaft and the stator and the vertical axis. B-spline
elements are used for the analysis so that accurate results are obtained even with a
sparse grid as shown in Fig. 35 . The flux lines computed here are similar those
computed by FEM [68]. Note that the air gap is very small compared to the average
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element size in the grid. Despite the geometric complexity and large number of parts
and materials involved, this approach for analysis yields results using structured grids
comparable to results from traditional FEM using conforming mesh.
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Iron block in a homogeneous magnetic field

The example of an iron cube in air subject to homogenous magnetic field has been
used in literature to verify a variety of formulations. Fig. 36 shows one-eighth of the
system modeled considering its symmetry. The relative permeability of iron cube is
1000. The modeled region is subjected to a homogenous magnetic flux density B, in the

z-direction.

57



Fig. 36 Iron cube in homogeneous magnetic field

The half-length of the iron cube edge is ‘a’. The symmetry plane are x=0, y=0 and
z=0. The planes x=b, y=b, and z=b represent the far boundaries. A homogeneous
magnetic field is applied in the z-direction with the aid of boundary conditions. On the

far boundaries, the Dirichlet boundary conditions are: A =B%b and A, =0 on x=b and

A :—B%b and A =0 on y=b. The dimensions used are a=20mm, b=40mm and the

flux density magnitude is B,=1.0T . In addition to this, the following essential

boundary conditions are also imposed
nxA=0 onI'y; (x=0and y=0) (29)
n-A=0 onI', (z=0 and z=b) (30)

As the magnetic flux density only exists in the z-direction, the normal components
of magnetic flux density must be zero on the symmetry planes and the tangential
component of magnetic field must be zero on planes normal to the z direction.
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Fig. 37 Iron objects with the same grid density

In addition to modeling the iron cube, we have modeled two other shapes as
shown in Fig. 37 , where the iron part is modeled as an octagonal prism and a cylinder.
The height of the parts is the same and equal to 20mm. The edge length of the right
octagonal prism is 20mm and the cylinder has radius = 20mm. The total number of
elements used in the model is 12167.

x=20mm x=24.14mm x=17.32mm
A. Cube B. Octagonal Prism C. Cylinder
Fig. 38 Cross-sections with the line y=z=10mm

As shown in Fig. 38 , along the line y=z=10mm, the interface between iron and air
is at x=20mm for the cube, at x=24.14mm for the right octagonal prism and at
x=17.32mm for the cylinder. Using the same number of elements and the same
boundary conditions for all three cases, the variation on the three components of
magnetic flux B along the line y=z=10mm are obtained as shown in Fig. 39
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Fig. 39 Components of B along the line y=z=10mm. (a) Bx (b) By (c) Bz

Fig. 39 (a) shows that only the magnetic flux density in x-direction is continuous
when the shape of the iron is cubic because the normal direction of the interface is along
the x-direction. The other components are tangential components and are discontinuous
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as expected. Similarly, for other shapes none of the components of B are normal
components and therefore none of them are continuous at the interface. The results
obtained for this example are similar to that obtained using the traditional FEM that
uses conforming mesh.

Plunger solenoid actuator

Solenoid actuators are designed to produce small linear motion of an armature
and are of several types depending on the shape of the armature. A solenoid actuator
with a plunger armature [69], as shown in Fig. 40 is considered in this example. The
armature and stator are made of steel laminates in order to reduce eddy current effect.
The stator has solenoidal coil, wound in the shape of a cylinder, or parallelepiped.

Ryo=70mm
Ryi=66mm

Rpg=22mm

Rp=20mm

Armature Stator t=12mm
Lp=42mm
g=10mm Airgap Coil Lc=46mm
Ls=16mm Stopper
t=12mm

Fig. 40 Plunger solenoid actuator

In Fig. 41 (a) the plunger is cylindrical and the solenoid is axisymmetric, while in
Fig. 41 (b), the plunger has square cross-section with rounded edges. We have referred
to the later actuator with square cross-section as the brick plunger actuator. For both
models, the number of turns N=400 and the current I=4A. The relative permeability of
the stator, the armature and the stopper is g =2000 and g, =1 in the coil.
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A. Cylindrical plunger B. Bricked plunger

Fig. 41 Top view of plunger actuators

Air
Caoil
Stator

A. Cylindrical Plunger B. Bricked Plunger

Armature

Stopper

Fig. 42 3D solid models of the solenoid actuators

Fig. 42 shows 3D solid models of the solenoid actuator model, which were used
for the analysis. In order to reduce the computational effort, only a fourth of the whole
system is modeled. The current density in the coil is in the circumferential direction and
is obtained by first solving an electrostatic problem. A voltage difference of 0.0546 V
was applied between the symmetry planes of the coil. Assuming the conductivity of the
coil to be o =10°S/m the current density obtained will be on average the same as the
current density applied for the 2D axisymmetric model. The same voltage boundary
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conditions are applied for the brick plunger actuator. Using 3D electrostatic analysis,
the computed current density is obtained as shown in Fig. 43 .
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Fig. 43 Magnitude of current density

The computed current density is then used to perform the magnetostatic analysis,
to compute magnetic flux density and magnetic field. At the symmetric planes, the
essential boundary conditions, nxA =0 , are applied. The computed magnetic flux
density is shown in Fig. 44 .
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Fig. 44 Magnetic flux density in y direction

For the axisymmetric case, using the reluctance method, the magnetic flux density
in the air gap can be calculated as B=0.1715 T and the magnetic force is F =14.7 N. Brauer
[69] has also provided 2D FEM results; B=0.170 T and F =19.34 N. The magnetic flux
density computed using IBFEM is also roughly in this range. The computed magnetic
field density in the y- direction is shown in Fig. 45 .

63



H-field

Y E‘mgvm
L80SES
L.559ES
L31ES
LOG1ES
§.12E4
5.631E4

| 3.141E4
6.513E3
-1.838E4
-4.328E4

A. Cylindrical Plunger B. Bricked Plunger

Fig. 45 Magnetic field in y direction

Fig. 45 (A) shows that the computed magnetic field in y direction is close to the
value of 1.364x10° A/m computed using the reluctance method [69]. Using the magnetic
field and flux density, the computed magnetic force on the cylindrical armature is 18.33
N, which is quite close to the force calculated by 2D FEM. For the brick plunger
armature, the computed force is 19.56 N. According to this analysis, the force on the
brick shaped armature is larger than on the cylindrical armature because the cross-
sectional area of the bricked armature (1.592x10° m?) is larger than that of the

cylindrical armature (1.257x107° m?).
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Fig. 46 Magnetic force versus gap

64

H-held

Y g.wgnem
1.57ES
1.321ES
1.071ES
8.218E4
5.724E4

m 3.23E4
7.353E3
-1L.759E4

-4.253E4
-6.748E4



Fig. 46 shows magnetic force versus gap between the armature and the stopper.
The analytical solution plotted was obtained using the reluctance method for the case
when the armature is cylindrical. When the gap is changed from 2mm to 10mm, the
magnetic force decreases. Structured mesh with the same number of nodes and
elements was used for each analysis as the gap was varied. For the cylindrical plunger
solenoid, the number of nodes is 10984. For the brick plunger solenoid, the total number
of nodes is 10876. The computed values are higher than the analytical values because
the reluctance method ignores fringe effects. Magnetic force of the brick plunger is a
little higher than the force of the cylindrical plunger.

2D Clapper solenoid actuator with cantilever beam

A cantilever beam is attached to the top surface of the armature. The cantilever
beam is a beam fixed at one end and attached to the moving armature at the other end.
The attachment location varies as shown in Fig. 47 . The distances from the center axis
to the tip of the beam are 10mm, 20mm, and 28mm. The thickness of the beam is 5mm
and the length of the beam is 80mm. The beam is made of aluminum whose material
properties are E=69 Gpa, v=0.29 and x, =1.

d 9y d
A B Cc
Fig. 47 Planar clapper solenoid actuator with a cantilever beam. A) d=10mm B) d=20mm

and C) d=28mm

For this analysis, 4 node bilinear elements were used. The total number of
elements in the model was 1550. Fig. 48 shows the tip displacement versus ampere-
turns. As NI increases, the displacement on the tip increases. When d=20mm or 28mm,
the displacements at the tip is much larger than when d=10mm. However, there is very
small difference in tip deflection between the two cases where d=20mm and d=28mm.
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Fig. 48 Displacement on the tip versus. Nl according to the location of the beam

3D Plunger solenoid actuator with structures

The plunger solenoid actuator with one of the three plates shown in Fig. 49
attached to its armature, was modeled using 3D elements. The top views of each the
plate structures and dimensions are shown in the figure. The first structure is a solid
plate, the second is a plate with one hole, and the third one is a plate with two holes.
The thicknesses of all plates are 2mm. All of the three structures is attached on the top
surface of the plunger armature as shown in Fig. 50 . The structures are made of
aluminum.

Round: 5mm Round: 5mm
L=10mm
L=5mm
‘R1=15mm. 'R1=15mm' T ‘R1=15mm.
Rp=20mm < Rp=20mm » Rp=20mm
R2=70mm < Ri1=30mm < Ri1=30mm
< <
< Ri2=60mm > < Ri2=60mm »
R2=70mm ' < R2=70mm q
< < »

Fig. 49 Top views of structures attached on the plunger armature. A) Solid plate, B) plate
with one hole, and C) plate with two holes
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A B C

Fig. 50 3D plunger solenoid actuators with attached structures. A) Solid plate, B) plate

with one hole, and C) plate with two holes

When NI=800 and the fixed boundary conditions are applied on the surfaces of the
structure at R=70mm, the magnetic force from the actuator results in the deflection of

the plate structures as shown in Fig. 51 .
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holes

Deformed structures: A) Solid plate, B) plate with one hole, and C) plate with two

The maximum displacements for the structures are 7.24x10"mm in the solid plate,
1.086x10°mm in the plate with one hole, and 8539x10"'mm in the plate including two
holes. Fig. 52 shows the maximum displacement versus NI (ampere-turns) for each
plate. Among the three structures, the plate with one hole has the largest deformation
while the solid plate has the highest stiffness.
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Fig. 52 Maximum displacement versus NI

7. Discussion

Magnetostatic analysis using structured mesh has been demonstrated using
solution structures for applying boundary and interface conditions. The method allows
geometry imported from solid modeling systems to be directly used for analysis
without approximation using a mesh. The approach has been demonstrated for both 2D
and 3D magnetostatic models. Structured mesh is easy to generate and the elements are
regular and not distorted as in traditional finite element mesh. Furthermore, the internal
elements are identical to each other and have the same stiffness matrix thus reducing
the computation required. The global equations were solved using direct solvers rather
than iterative solvers whose performance deteriorates when the global matrix is ill-
conditioned.

Magnetic forces were computed by integrating the magnetic force density.
Alternative approaches such as the virtual work principle can also be implemented with
the implicit boundary approach. If the force generated by magnetic forces significantly
deform the structures on which the magnets are mounted then it is necessary to
perform a fully coupled magneto-elastostatic analysis to computed the resultant
deformation. In this case, since the magnetic field can be altered by the deformation of
the structure, it leads to a nonlinear formulation of the coupled problem. The approach
presented in this report needs to be extended in the future to such nonlinear problems
as well as dynamics problems. Since 3D analysis is computationally expensive, it is not
always desirable to use a uniform mesh everywhere. Mesh refinement techniques are
needed that locally refines the mesh while still using a structured mesh that has regular
shaped elements. Development of such local refinement techniques is part of the future
work needed to make 3D magnetostatic analysis more feasible.
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V. MODELING SHELLS USING IBFEM

1. Overview

Shell theories are extended from the traditional plate theories. The two plate
theories that have been extensively studied and implemented in FEM are the classical or
Kirchoff’s plate theory and the first order or Mindlin plate theory. The classical plate
theory is also called the thin plate theory because it is based on Kirchhoff’s assumption
that for thin shells shear strain energy is negligible. Mathematically, this assumption
implies that the rotation at any point in plate is the slope of deflection at that point. The
weak form of the plate equations derived using this assumption contains volume
integral of the second derivatives of deflection. As a result, the test and trial functions
constructed for this weak form must be C' continuous interpolation or approximation
of the nodal values. This is difficult to achieve using traditional interpolation schemes
and therefore the results obtained using these elements are not reliable for thick plates
and shells. Due to these drawbacks, the thick plate theory or first order plate theory,
based on Mindlin’s assumption [70], are often preferred. In this theory, the deflection
and rotation at any point in the plate are independent of each other. The shear strain is
assumed to be constant and equal to the difference between the slope and rotation. This
assumption allows the plate elements to be C°continuous because the weak form
derived using Mindlin’s assumption involves only the first derivatives of the deflection.
Plate elements can be extended to simple flats shells by incorporating in-plane strains,
allowing it to handle both in-plane forces as well as bending forces. Curved structures
are approximated by adequate number of flat elements [71]. The flat shell elements uses
linear or bilinear approximation which is typically C°continuous. More advanced shells
based on curvilinear coordinates have also been formulated based on Mindlin theory..
Straightforward implementation of Mindlin plate theory is good for thick plates but
under-predicts deflections for relatively thin plates. Very thin plates or shells, exhibit
the so called shear-locking in plates and shells [72]-[75]. Various techniques have been
proposed to circumvent shear locking. Reduced integration is the best-known solution
for shear locking [76]. Increasing the order of the polynomials used for the interpolation
also improves the solution. A variety of mixed formulations have also been successfully
employed to eliminate locking and to explain why reduced integration works [75]-[77].

The analysis of shells using 3D structured mesh is presented in this chapter. A
structured mesh is a non-conforming mesh in which all the elements are regular in
shape (rectangles/cuboids). In traditional FEM, shell elements are two dimensional flat
or curved elements that approximate the geometry as shown in Fig. 53 . Fig. 53 (b)
shows a shell modeled using a 3D structured mesh where the shell geometry,
represented using parametric surfaces, passes through the elements of the grid.

69



Therefore, the geometry is independent of the mesh and could be represented using the
exact equations imported from CAD models. The use of structured mesh also allows
uniform B-spline basis functions to be used to represent the solution so that the
displacement field is represented as C' or C? continuous function.

Fig. 53 FEM mesh versus structured mesh for shells

A structured mesh is much easier to generate than a conforming finite element
mesh. Automatic mesh generation algorithms for FEM can be unreliable for
complicated geometries often resulting in poor or distorted elements and such distorted
elements is one of the main causes of errors in FEM solution. Significant amount of user
intervention is required rectify the mesh. Moreover, the analysis geometry is poorly
approximated using elements, especially when flat shell elements are used. These
limitations associated with mesh generation can be avoided by using a structured mesh
for analysis.

The nodes of a structured mesh are not guaranteed to lie on the analysis
boundary, and therefore the traditional methods used in FEM for applying essential
boundary conditions cannot be used. Implicit boundary method [42]-[45] has been
shown to be an efficient and accurate method for applying boundary conditions when
the equations of the boundary are available. We extended this method to handle
boundary conditions for shells. The performance and capabilities of IBFEM shell
elements are studied by solving several shell problems in structural analysis.

2. Implicit Boundary Method

The implicit boundary method uses approximate step functions of the boundary
#(x) =0 to construct solution structures for the solution such that the displacement
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boundary conditions are guaranteed to be satisfied. Let u, be displacement component
that must satisfy the boundary condition u, =43, along a subset of the boundary of the
domain. If D,(x)=0 is an implicit equation of the boundary I',, then the solution is
constructed as [44]-[45].

0,(x) = D, () () + U (x) 5.1)

The solution structure for the solution defined in Eq. (5.1) is then guaranteed to
satisfy the condition u =u’ along the boundary defined by the implicit equation
D.(x) =0. The boundary value function, u’, must be defined such that at the boundary T,
it has the prescribed value uf =a,. The variable part of the solution structure is the
function u’(x) which is defined by piece-wise interpolation or approximation over the
elements of the grid. The functions, D,(x), referred to here as the D-functions, are
constructed as approximate step functions, if essential boundary conditions are
imposed on the i component of displacement. These functions are defined using
implicit equations of the boundary, ¢(x) =0, as

0 #(X) <0
D, (x) = 1-(1-@) 0<P(x) <5 (5.2)
1 #(X) >S5

If no boundary conditions are applied on a boundary, then we set D,(x) =1 at that
boundary. The D-functions take a value of zero and has non-zero gradient at
boundaries In the limit as 50 this D-function approximates the Heaviside step
function which has a unit value inside the domain where ¢>0 and is zero at the
boundary and outside (¢<0). The use of an approximate step functions as the D-
functions in implicit boundary method ensures that only the boundary elements are
affected by this function. The variable part of the solution structure u?(x) can be defined
using B-spline or other approximations that provide a high order continuity. Uniform
B-spline elements applicable to structured mesh have been studied in the past [44],[46]
to demonstrate that the implicit boundary method can be used to apply boundary
conditions even when the approximation used does not have Kronecker’s delta
properties. In other words, even though the nodal values are not equal to the B-spline
approximation values at the nodes, the solution structure in Eq. (5.1) guarantees that the
essential boundary conditions are imposed.

For shells, the boundary is a curve on a surface and essential boundary conditions
specify values of displacements along the curved boundary or the local slopes on these
curves. Both these boundary conditions can be imposed by appropriately constructing
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the characteristic functions ¢(x) for the boundary curves. To apply displacement
boundary conditions, where the slope is not fixed, the characteristic function is defined
as the radial distance from the curve. In order to model clamped boundary condition,
where both slope and displacement are fixed, the characteristic function is defined as
the distance from a imaginary surface that passes through the boundary curve and is
normal to the shell surface.

The weak form of the elastostatic boundary value problem is the principle of
virtual work which can be written in the following form:

jasTch = jauTtdnjaudeQ (5.3)
Q T, Q

Using the solution structure in Eq. (5.1) the stresses and strains can also be
decomposed into a homogeneous part and a boundary value part.
e=¢’ +¢°

(5.4)
6=Ce=C(¢’ +&%)=¢"+¢6"

Where,

s, ouj a ou?
gi?Zi ai_'__J , Ui =D, g;:i 8i+—J .
2 aXi o, 2 ax]. OX.

The Dirichlet function, D,, is defined as per Eq. (5.2) for each displacement
component for which essential boundary condition is specified. Substituting the
preceding equations into the weak form, the following relation is obtained, where the
known quantities have been moved to the right hand side of the equation.

ISSTCasdQ = —jasicadmjauTTdnjaudeQ (5.5)
Q Q Ty Q

The boundary value function u* must be constructed such that at the boundary
where Dirichlet boundary conditions are applied it must have value equal to the
specified boundary condition at that boundary. When Dirichlet boundary conditions
are specified at multiple boundaries and the assigned values are not the same for all
boundaries, the boundary value function must take on appropriate values at respective
boundaries and transition smoothly in between. To accomplish this, the boundary value
function is constructed by piecewise interpolation or approximation using the shape
functions N; of the elements through which the boundary is passing. A displacement

component u' is defined within an element as u?=) N}, where ui are the nodal
j

values of the displacement component.
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3. B-Spline approximations

B-spline shape (basis) functions are traditionally constructed using a recursive
definition (Farin, 2002). The parameter space is partitioned into elements using a knot
vector (equivalent to a collection of nodes). General methods are available to insert
knots and elevate the order of the polynomial. However, for implementation in
structured mesh finite element analysis, it is convenient to define shape functions
within each element of the mesh such that the parametric domain of the element is [-1,1]
in the three parametric directions. The use of such shape functions for such uniform B-
splines shape functions have been demonstrated in past work for 3D elastostatic
elements [44]. Here we briefly summarize the main ideas and provide the shape
functions that were used for shell analysis.

The shape functions for one dimensional elements are derived using the
continuity requirements between neighboring elements. Any k" order B-spline has
k+1support nodes. A quadratic B-spline element in one-dimension has three nodes and
therefore it is represented by three shape functions. The coefficients of the shape
function are determined by requiring the approximations and its slope to be continuous
between elements. Additionally, the shape functions are required to be partition of
unity. The expression of the shape functions are given below,

1
N, :g(l—2r—r2)

N, :%(6—2#) (5.6)

N, :%(1+ 2r+r?%)

The plots of the shape functions in Eq. (5.6) are shown in Fig. 54
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Fig. 54 Shape function of one dimensional
quadratic B-spline element

A cubic B-spline element in one-dimension has four nodes and therefore it is
represented by four shape functions. These shape functions are derived by requiring the
approximation, its slope and curvature to be continuous between elements. These shape
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functions are also required to be a partition of unity. The expression of the shape
functions are given below,

1
N, =—(@1-3r+3r*-r®
=25 )

N, :%(23—15r—3rz +3r?)

1 (5.7)

N, =—(23+15r —3r> —3r%)
48

1
N, =—(1+3r+3r’ +r°
35 )

The plots of the shape functions in Eq. (5.7) are shown in Fig. 55 This figure shows
that the B-splines are not unity at respective nodes and do not vanish at other nodes.
This shows that they do not interpolate nodal values. Instead, smooth approximations
of the nodal values are created.
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Fig. 55 Shape function of one dimensional cubic B-spline element

The shape functions for the higher dimensional B-spline elements are constructed
as products of the shape functions for one-dimensional B-splines. The structured grid
consists of regular hexahedra (cube/cuboid), so the mapping from parametric space to
the physical space is linear. The mapping between parametric and physical space can be
defined as

(5.8)

where, x{ and x' are the lower and upper bounds respectively for nodal

coordinates of any given element.

The shape functions for two and three-dimensional cubic B-splines are constructed
as a product of one-dimensional corresponding one-dimensional shape functions. The
shape functions can be expressed as,

N (r,8) = Ny (N, (s)

(5.9)
Nfe[zk—l)+4(j—1)+i (r;s,t) =N;(r)N j (S)N, (1)
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4. Numerical Implementation

The B-spline shell elements are implemented as three-dimensional regular
elements (cube/cuboid) that are part of a structured mesh and each element contains a
portion of the surface representing the shell as shown in Fig. 53 The stiffness matrix for
linear elastic elements is computed as

Ke = j [B]' [C][BIV (5.10)

Only a portion of the shell surface that intersects with the element contributes to
its stiffness. The volume integration in Eq. (5.10) is evaluated as a combination of area
and thickness integration. In order to integrate accurately over the portion of the surface
passing through the element, intersection between the surface and the element is
computed and triangulated. The stiffness is then computed by integrating over these
triangles and adding the results as follows

N | o

M

K1=2] ( [ (BT [CI[BIA jdh (5.11)

N\:‘

In Eq. (5.11) A is the area of the i" triangle and h is the thickness of the shell.

For boundary elements that contain boundaries with essential boundary
conditions, the D-functions sharply dip from unit value to zero near the boundary over
a narrow band of width §~10°. The gradients of D-function over these narrow bands
can have large values. In order to accurately compute the contribution of the D-function
and its gradient to the stiffness matrix, strain-displacement matrix, [B] is split into two
parts as [B]=[B,]+[B,], such that [B;] contains only derivatives of the shape functions
while [B,] contains derivatives of the D-function [42]-[44]. Away from the boundaries
with specified boundary conditions, D, is unity and therefore [B,]=0 because the
derivative of D, are zero. Now the stiffness matrix can be expressed as

N‘:_'—.N‘:F

j ([B.J+[B,]) [C]([B 1+[B,]1)dAdh (5.12)
A

Expanding this expression, it can be seen that the stiffness matrix has the
following three components.

[K] =[KJ+([KI+[K,T')+[K,] (5.13)
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[K1]=I[I[B] [CIIB, ]dAJ (5.14)

[K.]=| [ [[BTICIIB,JA + [[B,T [CJ[BJdAjdh (5.15)
_hA A

[K:]= I[ [ 8,1 [C1IB, A }dh (5.16)
_M\A

NES

[K,] must be computed by sub-dividing the surface into triangles. [K,] and [K;]
contain terms involving gradients of D-functions and zero everywhere except in the
vicinity of boundaries that have essential boundary conditions specified. Using this fact
the computation of [K,] and [K;] can be converted into line integrals along the boundary

curves as shown below.

N

[Kz] =

j=1

N\:F.—-'N‘I

j [[BTICIIB,] ¢|d¢dljdh (5.17)
lj ¢

J

In Eq. (5.17), n, is the total number of line segments I, used to represent the

boundary curve within the element e. Similarly, the last term can be written as

n o 2

t1=3 | [T ICIB. |d¢dl dh (5.18)
h|J 3

=1

The boundary load terms are computed again by approximating the shell
boundaries within each element as a set of line segments and evaluating the load
integral along each line using Gauss quadrature as

0

j {N}Y {t}dT'dh (5.19)

,\,‘:_!_,N\:-

In Eq. (5.19), {1} is the traction acting on the boundary, |, are the line segments and
the shell thickness is h. Pressure loads and body forces require integration of the shell
surface which must be approximated as triangles for integration purpose. For example,
body force contribution is evaluated as
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{F}=

— Nz

[{NY {b}dAdn (5.20)

=

w|

In Eq.(5.20), the body forces are evaluated as a combination of through thickness
and area integrals. The integration over area is computed as a summation of the
integration over triangles generated on the surface.

5. Results and Discussion

In this section, the 3D structures mesh approach to shell analysis is demonstrated
using several examples and the results obtained by this approach has been referred to
as IBFEM results. Quadratic B-splines have 27 nodes are referred to as IBFEM27N and
cubic B-spline elements are IBFEM64N.

Centrally Loaded Square Clamped Plate in Bending

A square plate as shown in Fig. 56 is loaded by a uniform pressure of 100 psi. The
material used is structural steel. The problem description including dimensions and
loads are shown in the figure. The plate is clamped along all its edges. Both the 64-node
cubic B-spline elements and 27-node quadratic B-spline elements were used for the
analysis and compare with results obtained using traditional shell elements
implemented in commercial software (ABAQUS).

I- 1a00 -
L=b=10in
r=0.1m
F =100 psi (downward pressure)

Young's Modulus = 1.11966 X 10'° psi
Poison's ratio = .27

Fig. 56 Centrally loaded square plate
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3.646E-3
-4.051E-3

Fig. 57 IBFEM results (using cubic B-spline 64 node elements (5 x 5 Mesh)
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Fig. 58 Abaqus result using S4R (10 x 10 Mesh)

Table IV. Square plate: results for vertical displacement at the middle of the
square plate, based on various meshes and element types

Element type Mesh Max.Vertical
displacement
X 107 (in)
IBFEM 64N 2x2 3.562
5x5 4.051
10 x 10 4.055
IBFEM 27N 10x 10 3.966
20 x 20 4.043
40 x 40 4.059
ABAQUS S4R 5x5 3.703
10 x 10 4.054
20x 20 4.055

The results obtained using various elements are listed in table IV. Using
traditional FEM shell elements (ABAQUS S4R elements), the maximum deflection at the
center numerically converges to a value of 4.055 x 10 inch of vertical displacement at
the middle of the square plate. The table shows that the results of IBFEM 64 node shell
elements converge to the same answer with fewer number of elements. These elements
use cubic polynomial representation of the solution and hence represent shear strains
through thickness as parabolic and hence are able to represent the exact solution more
closely. The quadratic 27 node B-spline shell elements require a much larger number of
elements to reach the same solution.

Micro Air Vehicle Wing design

The dimensions of the structure for this problem are shown in Fig. 59 . The wing
is subjected to a normal pressure. One end is fixed to the fuselage while the side edges
are free. The material properties, loads and constraints are shown in the figure. The
thickness of the shell is 0.1 inch. Results computed using 64 node B-spline elements and
traditional FEM (ABAQUS S8R5) are compared here.
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Micro air vehicle wing
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Displacement plot (IBFEM 64N) for micro air vehicle wing (10 x 5 Mesh)

Fig. 60

Fig. 61 Displacement plot for micro air vehicle wing (ABAQUS S8R5, 542 elements)

The figures show that the results of IBFEM shell elements the ABAQUS 8 node
iso-parametric reduced integration elements are very close.

Design of vibrating / oscillating wings for MAV
To design oscillating structures such as flapping wings it necessary to analyze the

dynamics of structures. Modal analysis computes the natural frequencies and the mode

shapes of vibration of a structure. New concepts for oscillating wing design were
studied using modal analysis capability that was recently added to IBFEM software.

Fig. 62 shows a structural mechanism that can oscillate using internally applied
forces generated using embedded electromagnetic actuators. The analysis was
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performed using novel shell elements implemented in IBFEM software that can perform
the analysis for relatively complex geometry without needing a conforming surface
mesh. Fig. 62 (a) and (c) show the 3D grid and the applied forces that were used for the
analysis. The deformed shape of the wing like geometry is shown in Fig. 62.

(a).. (b)

(d)
Fig. 62 Oscillating structural mechanism
The modes of vibration of this structure were computed to understand the shapes

in which this structure can be made to vibrate or oscillate by inducing resonance. Fig. 63
shows the four modes of vibration of this structure.

Mode-I (b) Mode-II
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(c) Mode-lll (d) Mode-1V

Fig. 63 Mode shapes of vibration

Modes I-, II and IV are similar to cantilever beam oscillations but Mode-III
involves twisting. Clearly none of these modes are ideally suited for producing lift and
thrust for flapping flight for MAVs. Therefore, the design challenge is to compute the
right shape and reinforcement for the wing such that the first mode of vibration will
produce a fanning action that produces thrust. This will be attempted in future designs
using intuitive changes to the design. In future work, it is hoped that we will develop
topology optimization techniques to compute appropriate reinforcements for a desired
mode of vibration.

6. Discussion

Shell elements based on uniform B-spline shape function were studied and shown
to be accurate when compared with traditional FEM shell elements implemented in
commercial software. One of the key advantages of using these elements is that a
structured mesh, which is easy generate automatically, can be used for the analysis.
Moreover, the geometry is represented accurately using equations rather than
approximated by the mesh. Implicit boundary method for applying boundary
conditions is extended to shells. Both quadratic and cubic B-spline shape functions were
tested and it was found that cubic elements provided very good results with fewer
elements than quadratic elements. Computational cost is higher for these elements
compared to traditional shell elements but often fewer elements are needed to get
accurate results with cubic elements. The time taken to create the model is significantly
lower because structured mesh generation is easily automated. Future work in this area
includes extending these elements to non-linear applications involving large elastic
deformation and elasto-plastic deformations. The performance of the IBFEM shell
elements can be further improved by incorporating adaptive mesh refinement. The
stress concentrations problems can be analyzed faster with adaptive mesh refinement.
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The shell elements using IBFEM can also be extended to mixed solid-shell type analysis
where thin shells are attached to solid structures.
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VI. DESIGN OF ACTUATORS FOR FLAPPING WING

1. Design criteria

In this chapter, IBFEM is used as an actuator design tool. Solenoid actuators with
clapper armature or plunger armature and coil actuators are designed under given
design criteria. The main application of interest is actuators for flapping wing micro- air
vehicles. The micro air vehicles are small size aerial vehicles with a wing span of about
15 cm. For a micro air vehicle actuator, three main design criteria were used: coil
winding area, iron weight and size.

To illustrate the analysis and design methodology using IBFEM, the process is
demonstrated here using a set of assumed specification. An acceptable value for coil
winding area S, was assumed to be 12mm’. The entire coil winding area cannot be
assumed to be only copper because the coil includes copper and other materials
including insulator and air gaps. The relation between the coil winding area and the
copper conductor is defined as the packing factor F, [68]. When the coil is wound

tightly, the packing factor can be up to 75%. Thus, the packing factor is assumed to be
70% . The area of the coil wire is S, =5.01x10°mm? when the number of the American

Wire Gauge (AWG) is 40. Therefore, the number of coil turns N is given as following
equation

F.S,
N = g =1680 (6.1)

c

When the coil is wound to a cylindrical bobbin with the diameter of 4 mm, the total
length of the coil becomes about 21.1 m. As the resistance per meter for the given AWG
is 3.44 2/ m, the total resistance of the coil is approximately 72 Q3. In this research, it is
assumed that the coil wire can allow current of 100mA to flow. The allowable current of
the wire is based on plastic insulation. In case of the current source, LT3092,
manufactured by Linear technology, the maximum output current is 200mA. The input
voltage range is from 1.2 V to 40 V so that LT3092 can be operated by using a small size
battery. Thus, the current of 100mA can be obtained using LT3092. If N=1680 and the
amount of current I can be controlled by a digital processor, NI (ampere-turns) can vary
from 0 to 168. NI is also called magnetomotive force. In order to compare several
designed actuators in the later section, the magnetomotive force, NI=30, is used. When
the maximum current (100mA) flows in the coils, the coils can have maximum energy
dissipation as W = 1?R =0.72 [W].
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Another design criterion is the iron weight of the actuator. The iron core
contributes most to the weight of the actuator. Iron has high relative permeability so
that using iron for the core of the actuator can intensify the magnetic force of the
actuator. Therefore, there is a trade-off between the iron weight of the actuator and the
usage of the iron. As the second design criterion, we assumes that the total iron weight
can be up to 10g. In order to compute the iron weight of a actuator design, the mass
density of iron is assumed to be 7874kg/m®=7.874x10°g/mm®. The third design
criterion is the size of the actuator. In order to install an actuator inside the micro air
vehicle, we have assumed that the actuator should fit inside of a cube with edge length
of 2cm.

Here we first compare several actuator designs by computing the force generation
capacity using the magneto-elastostatic analysis capability implemented in IBFEM. Both
solenoid type actuators and coil actuators were studied.

2. Solenoid actuators with clapper armature

A solenoid actuator with a clapper armature is shown in Fig. 64 . The clapper
armature can move in the y-direction when the coils carry current. The armature and
the stator are made of thin steel laminations with relative permeability of 2000, a thin
steel lamination that can reduce heating caused by eddy current. When the current
flows through a coil, magnetic flux is created as shown in Fig. 64 . The magnetic flux
follows a closed path. If magnitude of the magnetic flux is known, a magnetic force can
be estimated using the Maxwell stress tensor method.

)

22 Clapper Armature

=)
Vi A4
@
\ 4

»gl1m

A

Coil > Coil

(-NI) (+NI)

EN

16

Stator
————— W1y W2

Fig. 64 Solenoid actuator with clapper armature

We assume the dimensions are 11=13=05mm, 12=15=3mm, 14=16=6.5mm,
g =1mm, and wl=w2 =w3=1mm .Using the reluctance method, the magnetic in the air

gap is estimated to be approximately ¢=6.285x10"" x NI [Wb]. Using this estimate, the
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magnetic flux density and the magnetic field density is B, =6.285x10™ x NI[T] and

H . =500 NI [A/m]

ga|

Using Maxwell’s stress tensor method, the normal magnetic pressure can be
obtained as

F=%2(H,,) (4xwL)=6.283x10"x(NI )’ [N] (62)

When NI =30, the magnetic force per unit length becomes 0.565 N/m. The magnetic
flux and the magnetic field density are 1.886x107[T] and 1.5x10°[A/m]. Using the

same geometry of the actuator, Fig. 65 (A) shows contour plot of magnetic vector
potential computed using IBFEM. Fig. 65 (B) shows magnetic field density in the y-
direction. The computed magnetic field density in the gap is approximately equal to the
analytical value of 1.5x10*[A/m]. For this analysis, the asymptotic boundary conditions

are applied on the outer boundaries. The computed force is 0.633 N/m. The computed
force and the analytical solution are quite close. The difference between them results
from a fringing flux, which the reluctance method ignores. As the iron domain is 40mm?,
the iron weight per unit depth is 0.315g/mm.

Vector Poten H-Field
VAL ¥ Qe
IT.?SSE-S I3.43'?E4
5.839E-5 2.825E4
3.892E-5 2.212E4
1.946E-5 : 1.6E4
2.086E-10 19.882E3
-1.946E-5 3.76E3
-3.892E-5 -2.361E3
-5.839E-5 -8.452E3
I—T.?SSE—S I— 1.46E4
9.731E-5 A 2.073E4

Fig. 65 Computed results using IBFEM. A) Contour plot of magnetic vector potential, and
B) Magnetic field density

Based on the initial design shown in Fig. 64 , three different designs are created by
changing the geometry of the armature and the stator. Fig. 66 shows three designs with
dimensions. The dimensions shown are all in mm. Even though the geometry is
different for each actuator, same mesh densities was used in the structured mesh
created for all the three designs. Nine node B-spline elements were used for the analysis.
The total number of nodes was 2586. The asymptotic boundary conditions were applied
on the outer boundaries. The magnetomotive force, NI =30, was applied.
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Fig. 66 Clapper solenoid actuators. A) Design 1, B) Design 2, and C) Design 3

Fig. 67 shows contour plots of magnetic vector potentials for all designs. Based on
those computations, Table V shows comparison between the three designs in terms of
the magnetic force and the iron weight.
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Fig. 67 Contour plots of magnetic vector potential for clapper solenoid actuators. A)
Design 1, B) Design 2, and C) Design 3

Table V. Comparison for three clapper solenoid actuators (NI=30)

Design 1 Design 2 Design 3
Force per m 0.691 N/m 0.509 N/m 0.681 N/mm
Iron weight per mm  0.315g/mm 0.283g/mm 0.320g /mm
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According to Table V, the first actuator design produces the largest force among
them. The second actuator is the lightest one.

3. Solenoid actuators with plunger armature

A solenoid actuator with a plunger armature is shown in Fig. 68 . The shape of the
plunger armature can be a brick, cylinder, or conics. There are two gaps of ¢ and gs that
the flux can enter and leave the plunger armature. Useful magnetic force is produced
only at g.

Fig. 68 Solenoid actuator with plunger armature

The armature and the stator are made of steel with the relative permeability of 2000.
The dimensions are 11=7mm , 12=25mm , 13=09mm , [4=45mm , I5=1.5mm ,
16=3.5mm, gs=0.1mm, g=1mm and wl=w2=w3=w4=1Imm . Using the reluctance

method, the magnetic flux is ¢=1.132x10"° x NI [Wb]. Based on the magnetic flux, the

magnetic flux density and the magnetic field density in each air gap can be computed as

follow B, =1.132x10°xNI[T] and H ,, = S B,., =900.8x NI [A/m]. Using the magnetic

Hy
field in the gap, the useful magnetic force can be calculated as follow. When NI =30,
the force becomes 0.918 N. The magnetic flux and the magnetic field density are
3.4x107%[T] and 2.702x10°[A/m]. Fig. 69 shows the computed results: contour plot of

magnetic vector potential and magnetic field density in the y-direction. For the analysis,
the same mesh density was used in the clapper solenoid actuator model. Nine node B-
spline elements were used. Asymptotic boundary conditions were applied on the outer
boundaries. The computed total force on the plunger armature is 0.9130 N/m. As the
total area of the iron is 38.8mm?, the iron weight per unit depth is 0.306g/mm.
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Fig. 69 Computed results using IBFEM. A) Contour plot of magnetic vector potential, and

B) Magnetic field in the y-direction

Modifying the initial design in shown in , three different designs are created as
shown in Fig. 70 . The dimensions shown are all in mm. For all designs, the area of the
2D model is as same as one of the clapper solenoid actuator. Nine node B-spline
elements were used for the analysis. The total number of nodes was 2548. The
asymptotic boundary conditions were applied on the outer boundaries. The
magnetomotive force, NI =30, was used.
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Fig. 70 Plunger solenoid actuators. A) Design 1, B) Design 2, and C) Design 3

Fig. 71 shows contour plots of magnetic vector potentials for all designs. Based on
those results, Table VI shows comparison for three designs in terms of the magnetic
force and the iron weight.
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Fig. 71 Contour plots of magnetic vector potential for plunger solenoid actuators. A)
Design 1, B) Design 2, and C) Design 3.

Table VI. Comparison for three plunger solenoid actuators (NI=30)

Design 1 Design 2 Design 3
Force per m 1.154 N/m 0.262 N/m 2.801 N/mm
Iron weight per mm  0.306g /mm 0.294g/mm 0.310g/mm
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According to Table VI, the third plunger solenoid actuator model can produce the
largest force among them. The second actuator model is the lightest one.

4. Solenoid actuators with a combined plunger & clapper armature

A combined plunger & clapper armature is an armature that includes a clapper &
plunger to increase the force. Three designs were studied. The sizes of those actuators
are similar to one of the clapper solenoid actuator in the previous section. Magnetic
force and iron weight for each actuator are characterized.

Fig. 72 shows three solenoid actuators with a mixture armature. The dimensions
shown are all in mm. For all designs, the area of the 2D model is as same as one of the
clapper solenoid actuator. For the analysis, the same mesh density is applied for all the
designs. Nine node B-spline elements were used for the analysis. The total number of
nodes was 2674. The asymptotic boundary conditions were applied on the outer
boundaries. The magnetomotive force NI is equal to 30.

=— 0.6
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Fig. 72 Three combined plunger & clapper solenoid actuators. A) Design 1, B) Design 2,
and C) Design 3

Contour plots of magnetic vector potentials are show in Fig. 73 . Based on those
results, Table VII shows comparison for three designs in terms of the magnetic force
and the iron weight.
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Fig. 73 Contour plots of magnetic vector potential for combined plunger & clapper
solenoid actuators. A) Design 1, B) Design 2, and C) Design 3.

Table VII. Comparison for three combined plunger & clapper solenoid actuators
(N1=30)

Design 1 Design 2 Design 3

Magnetic force per 0.961 N/m 0.413 N/m 1.30 N/m
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m
Iron weight per mm  0.342g/mm 0.339g/mm 0.340g /mm

According to Table VII, the third one can produce the largest force among them. The
second actuator is the lightest one.

5. Coil actuators

In this section, three coil actuators are studied under the given design criteria. The
coil actuators include permanent magnets so that higher magnetic flux can be produced
without current flowing though the actuator resulting in heating losses. The coil
actuator has magnetic force in the conductive coil instead of one on the armature of the
solenoid actuator, a magnetic force that is computed using the Lorentz force equation.

Fig. 74 shows three coil actuators. The dimensions shown are all in mm. For all the
designs, the rectangular area of the 2D model including the air domain is 18x18mm?.
The coil winding area is the same as in previous solenoid actuators. Two permanent
magnets have different direction with the same remanant flux of 0.8 T. The first design
is based on a typical voice coil actuator in a loudspeaker. The second is a design to
remove the iron laminates from the first design. The third design has a gap at the
bottom portion of the iron laminate, which allows the coil to move freely in the
downward direction. For the analysis, the same mesh density is applied for all designs.
Four node bilinear elements were used. The total number of nodes was 12036. The
asymptotic boundary conditions were applied on the outer boundaries. NI is equal to 30.

Pomarent 2 =] |=— A N N

| Permanent magngt |

Permanent njagnet

1 T T L Isi
N N S| N BN NS
| |«
1f " 11.5 A s [~ Moving coils
l — | |

Moving coils A \\‘ B L_
— 22

=— 124 —= Moving coils

Fig. 74 Three coil actuators. A) Design 1, B) Design 2, and C) Design 3

The magnitudes of the magnetic flux densities are show in Fig. 75 . As the Lorentz
force is proportional to the magnetic flux density, a stronger magnetic flux density near
the moving coils can create a larger force. The first design has the strongest magnetic
flux near the moving coils. Based on those results, Table VIII shows comparison for
three designs in terms of the Lorentz force on the moving coil and the iron weight of the
actuator.
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Fig. 75 Magnitude of B fields for three coil actuators. A) Design 1, B) Design 2, and C)
Design 3.

Table VIII. Comparison for coil actuators (NI=30)

Design 1 Design 2 Design 3
Force per m 21.0 N/m 2.64 N/m 9.12 N/m
Iron weight per mm  0.428g/mm 0g/mm 0.394g/mm

According to Table VIII, the first coil actuator can produce the largest force among

them. The second design is the best design if the actuator weight is the most critical
criterion.

6. The best actuator among the designed actuators

Using IBFEM, four types of actuators were examined such as the clapper solenoid
actuator, the plunger solenoid actuator, the combined plunger & clapper solenoid
actuator, and the coil actuator. Among them, the coil actuator is the best actuator
considering the given design criteria. Among several designs for the coil actuators, the
first design is used for flapping wings of the micro air vehicle as shown in Fig. 76 Coil
actuators have several advantages over the solenoid actuators that were studied. The
most important being the force direction can be reversed by changing the direction of
current. The magnitude does not vary due to the deformation or movement of the coil
as long as the coil is within the uniform field created by the magnets.
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Fig. 76 The best magnetic actuator among several designed actuators

This coil actuator ideas was further tested using 3D model as shown in Fig. 77 .
Considering the symmetry, one fourth of the actuator was modeled. The geometry was
modeled using commercial software, Pro/engineering. Fig. 78 shows the dimension of
the 3D coil actuator and the orientation of the permanent magnets. The dimensions
shown are all in mm.

Permanent magnets

Iron laminates
Moving coils

Fig. 77 Sold model of the 3D coil actuator
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Fig. 78 The top view of the 3D coil actuator

The moving coils carry current, coils that has a conductivity values of 10° S/m. In order
to perform the analysis, eight node brick elements were used. The total number of the
nodes was 9651. According to the design criterion, the magnetomotive force, NI, can
vary from 0 to 168. When NI is equal to 30, the magnetic flux density of the coil actuator
is shown in Fig. 79 .
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Moving coils

Fig. 79 The magnitude of the magnetic flux density of the coil actuator

The magnetic flux density, B, vary from 1.17 to 2.33 T nearby the moving coils, so the
computed force is -0.114 N. When NI is equal to 10, 30, 60, 90, 120 or 168, the computed
Lorentz forces are plotted in Fig. 80 . This figures shows the linear relation between the
magnetomotive force and the Lorentz force. The maximum force is 0.683 N.
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Fig. 80 Lorentz force of the coil actuator versus NI

7. Coupled magneto-elastostatic analysis of flapping wing actuation

The best coil actuator is embedded in a micro air vehicle with flapping wings as
shown in Fig. 81 . The coil actuator can fit inside of the fuselage. The moving coil of the
coil actuator is attached to the structure or could even be built-into the structure.

Fig. 81 The coil actuator with flapping wings

97



Four different structure supports for the wing were designed as shown in Fig. 82 . The
structures are modeled as shells and surface models as shown in Fig. 83 used represent
their geometry. The thickness of the shell-like structure is assumed to be equal to
0.45mm. All the designs have a similar top view; however, they have different front and
side views. The dimensions shown are all in mm. As the length in chordwise direction
is 26 mm, two coil actuators can be placed along the chordwise direction because the
width of the coil actuator is 12.2mm.

Fig. 82 Four structures with flapping wings. A) Design 1, B) Design 2, C) Design 3, and D)
Design 4.
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Fig. 83 Four surface structures with flapping wings. A) Design 1, B) Design 2, C) Design 3,
and D) Design 4.

In order to perform analysis of thin shell-like structures, IBFEM shell elements
described in the previous chapter were used. The total number of nodes in model is 666.
Considering the symmetry of the geometry, half of the structure was modeled for the
analysis. The structured mesh and the boundary conditions are shown in Fig. 84 . The
magnetic force acts downward so that the wing undergoes an upstroke. When one coil
actuator is used, the applied force varies from 0 to 0.342 N at the edge. Using two coil
actuators, the magnetic force can be double.
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Natural boundary condition

Essential boundary condition

Fig. 84 Structured mesh and boundary conditions of the first design

By reversing current direction, force can be reversed so that the wing can undergo a
down-stroke. Using the coil actuator, the same amount of Lorentz force can be
produced in the opposite direction by changing the direction of the current. When NI is
equal to 30, the wing up-strokes and down-strokes of the four designs are shown in Fig.
85 . For the up-stroke, the maximum displacement on the tip is 2.633x10°mm in the
first design, 4.238x10°mm in the second design, 3.765x10°mm in the third design, and
1.968x107'mm in the fourth design. Magnitudes of the tip deflections during the wing
up-stroke are the same as ones during the wing down-stroke because the magnetic force
is proportional to the displacement. Thus, the tip deflection can be double including
both strokes. Among the four designs studied here, the last design produces the largest
tip deflection.
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Fig. 85 Displacement in the z-direction during the wing stroke. A) Design 1, B) Design 2, C)
Design 3, and D) Design 4.
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When NI varies from 1 to 168, the tip deflection as a function of the magnetomotive
force is shown in Fig. 85 . The first three designs are too stiff for our application.

Tip displacement [mm]
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Fig. 86 Tip displacement versus NI for wing upstroke
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VIl.  CONCLUSIONS AND FUTURE RESEARCH DIRECTION

1. Summary

The goal of this project was to explore means of designing multi-functional
composite structures that have sensing and actuation capabilities. Both sensing and
actuation means were studied. Computational tools were created that help in designing
and analyzing magnetically actuated composite structures. A brief summary of each of
these activities is given below.

Composite sensors:

A method for detecting load application and damage in composite structures by
determining change in resistivity/conductivity was studied. An algorithm for solving
inverse problem to determine average resistivity values in composite structures was
demonstrated. The method can use data from an arbitrarily large number of electrodes
to compute average values of resistivity or conductivity for the structure. Finite element
models for the structure are used to solve the forward problem, making this method
very general and applicable to arbitrary shaped structures. Ideally, the electrodes
should be embedded in the structures during the manufacturing process itself so that it
can be used for quality control, detection of defects as well as subsequent health
monitoring. One of the advantages of measuring resistivity is that damage can be
detected even in structures that were not tested during manufacturing. Damage can be
detected for structures that are in use by attaching electrodes on the surface,
determining the average resistivity and comparing it to values associated with
undamaged material. The main source of error in this approach arises from inaccuracy
in the geometric models of the structure and the electrodes. Random noise added to the
voltage data used in numerical validation indicates that any error in the voltage data
can get amplified due to difficulties in numerical convergence. In principle, a similar
inverse approach can also be used to determine applied loads on the structure.
Experimental studies indicate that this may be difficult because the changes in the
electrode voltage due to strains are very small. Even with amplification, the data is hard
to use because of significant non-linearity in the observed behavior. However, the
approach we developed is promising for detecting damages or defects because they
cause significant changes in resistivity and is therefore easier to detect. Further study is
needed to explore ways of determining applied loads and strains.
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Magnetically actuated composite structures

The idea of using magnetic forces to actuate structural mechanisms was studied.
The main application of interest is micro air vehicle wings that are shell like structures.
Topology optimization method was studied as a potential method for designing
structures that have specified modes of deformation. The structure is then to actuated
using magnetic actuation means built into or around the structures. Several actuators
were studied including solenoid actuators and coil actuators. After systematic
comparison of several designs, it was concluded that a coil actuator built into composite
structures is an ideal means for actuation of composite structures. A conceptual design
of a flapping wing vehicle was developed that is designed to actuate by built in
actuation capability of the body, wing and support structures. No external mechanisms,
motors or linkages are needed.

Computational tools for designing magnetically actuated structures

Computational tools were developed to design and analyze structures actuated by
magnetic forces. Magnetostatic analysis capability was implemented into a pre-existing
software (named IBFEM) developed at the University of Florida that can perform finite
element analysis without the need for generating mesh. Solid and surface geometry
modeled on commercial CAD software can be imported into this software and analysis
can be performed without approximating the geometry using a conforming mesh. The
structured mesh approach has been demonstrated to work for magnetostatic analysis
and validated using several examples with known solutions. The approach has been
demonstrated for both 2D and 3D magnetostatic models. Structured mesh is easy to
generate and the elements are regular and not distorted as in traditional finite element
mesh. Magnetic forces were computed by integrating the magnetic force density. These
forces and then used in a subsequent structural analysis to determine the deflection of
the structure. Shell elements based on uniform B-spline shape function were
implemented into IBFEM. One of the key advantages of using these elements is that a
structured mesh, which is easy generate automatically, can be used for the analysis.
Both quadratic and cubic B-spline shape functions were tested and it was found that
cubic elements provided very good results with fewer elements than quadratic
elements. Computational cost is higher for these elements compared to traditional shell
elements but often fewer elements are needed to get accurate results with cubic
elements. The time taken to create the model is significantly lower because structured
mesh generation is easily automated.

2. Future work

Design methodology developed here based on topology optimization can be
extended to design structures that morph or oscillate in specified modes. This would
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allow us to design wings that are designed to oscillate in a mode shape that produces
the most lift and thrust. High speed photography has been used to study motion of
insect and bird wings by biologists. It is challenging to design wings that can oscillate in
a fashion that mimics the flapping of insect or bird wings. Preliminary results obtained
using topology optimization in this research suggests that this is a promising area for
further study but it is a challenging problem that may take 2-3 years of work especially
if we also want to create physical models for validation. In order to fully understand the
interaction of flapping wings with air, fluid structure interaction model are needed.
Incorporating CFD into IBFEM software would make simulation and analysis of such
systems much easier than currently available tools.

The magnetostatic analysis capability that was developed in this research needs to
be extended in the future to nonlinear problems as well as dynamics problems. Since 3D
analysis is computationally expensive, it is not always desirable to use a uniform mesh
everywhere. Mesh refinement techniques are needed that locally refines the mesh while
still using a structured mesh that has regular shaped elements. Development of such
local refinement techniques is part of the future work needed to make 3D magnetostatic
analysis less expensive. For application to structural mechanisms undergoing large
deformation, the shell elements must be extended to allow large elastic deformation and
elasto-plastic deformations. The performance of the IBFEM shell elements can also be
further improved by incorporating adaptive mesh refinement. The shell elements using
IBFEM can also be extended to mixed solid-shell type analysis where thin shells are
attached to solid structures.

This research focused on the steady static analysis so that the coupled problem is
modeled as a weakly coupled magneto-elastostatic analysis. This assumption allows us
to perform the magnetostatic and elastostatic analysis sequentially. If the magnetic field
changes due to the elastic deformation, the problem becomes nonlinear and a strongly
coupled nonlinear analysis is needed. The magnetic field may change because the
structural deformation may cause permanent magnets or circuits attached to the
structure to also move relative to each other. If the structure undergoes large
deformation then geometric nonlinearities must be included. In addition, if the coupled
problem is a dynamic problem, then the electrical circuits, the magnetic circuits and the
structural analysis must be solved as a coupled problem. Another source of nonlinearity
is due to contact between the armature and the stator.
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